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Tutorial 11: Multiple Integrals in Polar Coordinate &

Its Engineering Application

Prepared by: Hong Vin | Website: https://kix1001.hongvin.xyz

Question 1

In the following exercises, change the cartesian integral into an equivalent polar coordinate integral. Then
solve the integral in polar coordinate:

a)

∫ 1

−1

∫ √
1−x2

0

dydx

b)

∫ 2

0

∫ x

0

ydydx

c)

∫ 1

−1

∫ √
1−x2

−
√
1−x2

2

(1 + x2 + y2)
2 dydx

d)

∫ ln 2

0

∫ √
(ln 2)2−y2

0

e
√
x2 + y2dxdy

Solution

a) ∫ 1

−1

∫ √
1−x2

0

dydx =

∫ 1

−1

√
1− x2dx

Let x = sin(θ), θ ∈ [−π
2 ,

π
2 ]. Therefore, dx = cos(θ)dθ.

∫ 1

−1

∫ √
1−x2

0

dydx =

∫ 1

−1

√
1− x2dx

=

∫ 1

−1

√
1− sin2(θ) cos(θ)dθ

=

∫ 1

−1

√
cos2(θ) cos(θ)dθ

=

∫ 1

−1

| cos(θ)| cos(θ)dθ =

∫ 1

−1

cos2(θ)

=

∫ 1

−1

1

2
+

1

2
cos(2θ)dθ

=
1

2
θ +

1

4
sin(2θ)

∣∣∣∣1
−1

=
1

2
sin−1(x) +

1

2
x
√
1− x2

∣∣∣∣1
−1

=
π

2

b) ∫ 2

0

∫ x

0

ydydx =

∫ 2

0

x2

2
dx

=
x3

6

∣∣∣∣2
0

=
4

3
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c)

I =

∫ 1

−1

∫ √
1−x2

−
√
1−x2

2

(1 + x2 + y2)2
dydx (region: unit disk x2 + y2 ≤ 1)

=

∫ 2π

0

∫ 1

0

2

(1 + r2)2
, r, dr, dθ (polar coordinates x = r cos θ, ; y = r sin θ)

=

∫ 2π

0

(∫ 1

0

2r

(1 + r2)2
, dr

)
dθ

Use the substitution u = 1 + r2, so du = 2r, dr. When r = 0 ⇒ u = 1, and when r = 1 ⇒ u = 2. Thus,

∫ 1

0

2r

(1 + r2)2
dr =

∫ 2

1

1

u2
du

=

[
− 1

u

]2
1

= −1

2
+ 1 =

1

2
.

Therefore,

I =

∫ 2π

0

1

2
dθ =

1

2
· 2π = π

d) ∫ ln 2

0

∫ √
(ln 2)2−y2

0

e
√

x2+y2
dx dy

The limits of integration are given by 0 ≤ y ≤ ln 2 and 0 ≤ x ≤
√

(ln 2)2 − y2. The upper limit for x can
be rewritten as x2 ≤ (ln 2)2 − y2, which simplifies to x2 + y2 ≤ (ln 2)2. This inequality describes the area
inside and on a circle centered at the origin with a radius of R = ln 2.

Given that x ≥ 0 and y ≥ 0, the region of integration is the portion of this circle in the first quadrant.

The circular nature of the domain and the form of the integrand (x2 + y2) make it ideal to convert to
polar coordinates. The conversion formulas are:

x = r cos θ

y = r sin θ

x2 + y2 = r2

dx dy = r dr dθ

The limits for the region in polar coordinates become:

• Radius: 0 ≤ r ≤ ln 2

• Angle: 0 ≤ θ ≤ π
2

The integrand e
√

x2+y2
becomes e

√
r2 = er.

Thus, the integral in polar coordinates is:

∫ π
2

0

∫ ln 2

0

er · r dr dθ

Next, we evaluate the integral with respect to r using integration by parts, where
∫
u dv = uv −

∫
v du.

Let u = r and dv = er dr. Then du = dr and v = er.
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∫ ln 2

0

rer dr =

[
rer −

∫
er dr

]ln 2

0

= [rer − er]
ln 2
0

= [(r − 1)er]
ln 2
0

= ((ln 2− 1)eln 2)− ((0− 1)e0)

= ((ln 2− 1) · 2)− (−1 · 1)
= 2 ln 2− 2 + 1

= 2 ln 2− 1 = ln(4)− 1

Finally, we substitute the result from the inner integral into the outer integral and evaluate with respect
to θ: ∫ π

2

0

(ln 4− 1) dθ = (ln 4− 1)

∫ π
2

0

dθ

= (ln 4− 1) [θ]
π
2
0

= (ln 4− 1)
(π
2
− 0
)

=
π

2
(ln 4− 1)

Question 2

Evaluate the

∫∫
1− x2 − y2dA using polar coordinates

Solution
The region R is a unit circle, so we can describe it as R = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}.
Using the conversion x = r cos θ, y = r sin θ, and dA = rdrdθ, we have∫∫

R

(
1− x2 − y2

)
dA =

∫ 2π

0

∫ 1

0

(
1− r2

)
rdrdθ

=

∫ 2π

0

∫ 1

0

(
r − r3

)
drdθ

=

∫ 2π

0

[
r2

2
− r4

4

]1
0

dθ

=

∫ 2π

0

1

4
dθ =

π

2

Question 3

Find the volume below z =
y2

x2 + y2
, above xy-plane and between cylinder x2 + y2 = 1 and x2 + y2 = 2

Solution
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∫ 2π

θ=0

∫ √
2

r=1

z r dr dθ =

∫ 2π

θ=0

∫ √
2

r=1

y2

x2 + y2
r dr dθ

=

∫ 2π

θ=0

∫ √
2

r=1

y2

r2
r dr dθ

=

∫ 2π

θ=0

∫ √
2

r=1

r2 sin2 θ

r2
r dr dθ

=

∫ 2π

θ=0

∫ √
2

r=1

sin2 θ r dr dθ

=

∫ 2π

θ=0

(
r2

2
sin2 θ

)∣∣∣∣r=
√
2

r=1

dθ

=

∫ 2π

θ=0

sin2 θ

2
dθ

=
1

2

∫ 2π

θ=0

1

2
(1− cos 2θ) dθ

=
1

4

∫ 2π

θ=0

(1− cos 2θ) dθ

=
1

4

(
θ − sin 2θ

2

) ∣∣∣θ=2π

θ=0

=
1

4
(2π) =

π

2

Question 4

Find the volume between the sphere x2 + y2 + z2 = 1 and the cone z =
√
x2 + y2

Solution
We seek the volume inside the sphere x2 + y2 + z2 = 1 and above the cone z =

√
x2 + y2.

In spherical coordinates (ρ, ϕ, θ), x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ, the volume element is

dV = ρ2 sinϕdρ dϕ dθ

.
The cone z =

√
x2 + y2 becomes ρ cosϕ = ρ sinϕ ⇒ cosϕ = sinϕ ⇒ ϕ = π

4 .
Thus, the region is 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

4 , 0 ≤ ρ ≤ 1.

V =

∫ 2π

0

∫ π/4

0

∫ 1

0

ρ2 sinϕ dρ dϕ dθ

=

(∫ 2π

0

dθ

)(∫ π/4

0

sinϕdϕ

)(∫ 1

0

ρ2 dρ

)

= (2π) [− cosϕ]
π/4
0

[
ρ3

3

]1
0

= 2π

(
1−

√
2

2

)
· 1
3

=
2π

3

(
1−

√
2

2

)
=

2π

3
− π

√
2

3
=

π

3
(2−

√
2)
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Question 5

Volume is equal to area only if the height (z) is equal to 1 . Find the area of R where R is the region
bound by r = 3 cos θ.

Solution

Region bound by r = 3 cos θ

How to sketch the region R?

r · r = 3 cos θ · r
r2 = 3r cos θ

x2 + y2 = 3r cos θ

x2 + y2 = 3x

x2 − 3x+ y2 = 0(
x− 3

2

)2
+ y2 =

(
3
2

)2
= 9

4

x = 3
2 , y = 0

Volume = area when z = 1. Hence,

A =

∫∫
dA

= 2

∫ π
2

θ=0

∫ r=3 cos θ

r=0

r dr dθ

=

∫ π

θ=0

∫ r=3 cos θ

r=0

r dr dθ ⇐ if we set up like this, we will get cos θ = −1 and cos 0 = 1. The total will be 0.

= 2

∫ π/2

θ=0

r2

2

∣∣∣∣r=3 cos θ

r=0

dθ

=

∫ π/2

θ=0

9 cos2 θ dθ

=

∫ π/2

θ=0

9

2
(1 + cos 2θ) dθ =

9π

4

Question 6∫∫∫
ydV , a solid is bound by z = 4− x2 − y2 in the first octant (x = 0, y = 0, z = 0)

Solution

z = 4− x2 − y2

0 = 4− x2 − y2

22 = x2 + y2, r = 2
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∫∫∫
ydV =

∫ π
2

0

∫ 2

0

∫ 4−x2−y2

0

y dz rdr dθ

=

∫ π
2

0

∫ 2

0

[yz]
z=4−x2−y2

z=0 r dr dθ

=

∫ π
2

0

∫ 2

0

(4− x2 − y2)y r dr dθ

=

∫ π
2

0

∫ 2

0

(4− r2)r sin θ r dr dθ

=

∫ π
2

0

∫ 2

0

sin θ · r2(4− r2) dr dθ

=

∫ π
2

0

∫ 2

0

(4r2 sin θ − r4 sin θ) dr dθ

=

∫ π
2

0

[
4r3

3
sin θ − r5

5
sin θ

]r=2

r=0

dθ

=

∫ π
2

0

(
32

3
sin θ − 32

5
sin θ

)
dθ

=

[
−32

3
cos θ +

32

5
cos θ

]π
2

0

=

(
−32

3
cos

π

2
+

32

5
cos

π

2

)
−
(
−32

3
cos 0 +

32

5
cos 0

)
= (0)−

(
−32

3
+

32

5

)
=

32

3
− 32

5

=
160− 96

15

=
64

15

Question 7

Use cylindrical coordinates to find the volume of a curved wedge cut out from a cylinder
(
x2 − 2

)2
+y2 = 4

by the planes z = 0z = 0 and z = −y.

Solution
First, sketch the integration region.

(x− 2)2 + y2 = 4 is a circle, since x2 + y2 = 4x ⇔ r2 = 4r cos(θ)

r = 4 cos(θ)
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Since 0 ≤ z ≤ −y, the integration region is on the y ≤ 0 part of the z = 0 plane.

V =

∫ 2π

3π/2

∫ 4 cos(θ)

0

∫ −r sin(θ)

0

r dz dr dθ.

V =

∫ 2π

3π/2

∫ 4 cos(θ)

0

[−r sin(θ)− 0] r dr dθ

V = −
∫ 2π

3π/2

([
r3

3

]4 cos(θ)

0

)
sin(θ) dθ.

V = −
∫ 2π

3π/2

43

3
cos3(θ) sin(θ) dθ.

Introduce the substitution: u = cos(θ), du = − sin(θ) dθ;

V =
43

3

∫ 1

0

u3 du =
43

3

(
u4

4

∣∣∣∣1
0

)
=

43

3
· 1
4
=

16

3

Question 8

Consider the region E inside the right circular cylinder with equation r = 2 sin θ, bounded below by the
rθ-plane and bounded above by the sphere with radius 4 centered at the origin. Set up a triple integral
over this region with a function f(r, θ, z) in cylindrical coordinates.

Solution
Consider the region E inside the right circular cylinder with equation r = 2 sin θ, bounded below by the rθ-plane
and bounded above by the sphere with radius 4 centered at the origin. Set up a triple integral over this region
for a function f(r, θ, z) in cylindrical coordinates.

The triple integral in cylindrical coordinates for a function f(r, θ, z) is given by:∫∫∫
E

f(r, θ, z) dV =

∫ θmax

θmin

∫ rmax(θ)

rmin(θ)

∫ zmax(r,θ)

zmin(r,θ)

f(r, θ, z) r dz dr dθ

We need to find the bounds for z, r, and θ that describe the region E.

The region is bounded below by the rθ-plane, which corresponds to the plane z = 0. The region is bounded
above by the sphere of radius 4 centered at the origin. The equation of this sphere in Cartesian coordinates is
x2 + y2 + z2 = 16. In cylindrical coordinates, since r2 = x2 + y2, this becomes r2 + z2 = 16.

Solving for z, we get z =
√
16− r2 (we take the positive root for the upper hemisphere). Therefore, the limits

for z are:

0 ≤ z ≤
√

16− r2
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The projection of the volume onto the rθ-plane (the xy-plane) is determined by the cylinder r = 2 sin θ. For any
given angle θ, the radius r extends from the origin (r = 0) to the edge of the cylinder (r = 2 sin θ). Therefore,
the limits for r are:

0 ≤ r ≤ 2 sin θ

To find the limits for θ, we analyze the base of the cylinder r = 2 sin θ in the xy-plane. To ensure the radius r
is non-negative, we must have sin θ ≥ 0. This condition is met for angles in the first and second quadrants.

The curve starts at the origin when θ = 0 (since r = 2 sin(0) = 0), traces a full circle, and returns to the origin
when θ = π (since r = 2 sin(π) = 0). Therefore, the limits for θ are:

0 ≤ θ ≤ π

Combining these limits, the triple integral is set up as follows:∫ π

0

∫ 2 sin θ

0

∫ √
16−r2

0

f(r, θ, z) r dz dr dθ

Question 9

Find the volume of solid bound by z = 2 and z =
√
x2 + y2

Solution
We want to find the volume of the solid region E bounded above by the plane z = 2 and bounded below by the
cone z =

√
x2 + y2.

The equations involve x2 + y2, and the solid has an axis of symmetry along the z-axis. This makes cylindrical
coordinates (r, θ, z) the most convenient choice. The coordinate transformations are:

x = r cos(θ)

y = r sin(θ)

x2 + y2 = r2

The volume element in cylindrical coordinates is dV = r dz dr dθ. The equations of the bounding surfaces
become:

• Cone: z =
√
r2 =⇒ z = r

• Plane: z = 2

The volume V is given by the triple integral over the region E:

V =

∫∫∫
E

dV

We need to determine the limits of integration for z, r, and θ.

Limits for z: The solid is bounded below by the cone (z = r) and above by the plane (z = 2). Thus, the
limits for z are:

r ≤ z ≤ 2

Limits for r and θ: The limits for r and θ are determined by the projection of the solid onto the xy-plane.
This projection is the region where the cone intersects the plane. We find this by setting the z-values equal:

r = 2

This describes a circle of radius 2 centered at the origin. Therefore, the radius r ranges from 0 to 2, and the
angle θ ranges over a full circle from 0 to 2π.

0 ≤ r ≤ 2

0 ≤ θ ≤ 2π
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The Integral: Combining these limits, the volume integral is:

V =

∫ 2π

0

∫ 2

0

∫ 2

r

r dz dr dθ

We evaluate the integral from the inside out.

Step 1: Integrate with respect to z∫ 2

r

r dz = r [z]
2
r = r(2− r) = 2r − r2

Step 2: Integrate with respect to r Substitute the result from Step 1 into the next integral:∫ 2

0

(2r − r2) dr =

[
r2 − r3

3

]2
0

=

(
22 − 23

3

)
− (0) = 4− 8

3
=

12

3
− 8

3
=

4

3

Step 3: Integrate with respect to θ Substitute the result from Step 2 into the final integral:∫ 2π

0

4

3
dθ =

4

3
[θ]

2π
0 =

4

3
(2π − 0) =

8π

3

The volume of the solid bounded by the plane z = 2 and the cone z =
√
x2 + y2 is:

V =
8π

3

Question 10

Use spherical coordinates to find the volume of the region outside the sphere ρ = 2 cos(ϕ) and inside the
sphere ρ = 2 with ϕ ∈ [0, π/2].

Solution

V =

∫ 2π

0

∫ π/2

0

∫ 2

2 cos(ϕ)

ρ2 sin(ϕ) dρ dϕ dθ.

V =

∫ 2π

0

∫ π/2

0

(
ρ3

3

) ∣∣∣∣∣
2

2 cos(ϕ)

sin(ϕ) dϕ dθ

V =

∫ 2π

0

∫ π/2

0

[
23

3
− (2 cos(ϕ))3

3

]
sin(ϕ) dϕ dθ

V =

∫ 2π

0

∫ π/2

0

1

3

[
8− 8 cos3(ϕ)

]
sin(ϕ) dϕ dθ

V =
8

3

∫ 2π

0

∫ π/2

0

[
1− cos3(ϕ)

]
sin(ϕ) dϕ dθ

V =
8

3
(2π)

∫ π/2

0

[
sin(ϕ)− cos3(ϕ) sin(ϕ)

]
dϕ

V =
16π

3

(− cos(ϕ))

∣∣∣∣∣
π/2

0

−
∫ π/2

0

cos3(ϕ) sin(ϕ) dϕ

 .
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Introduce the substitution for the integral: u = cos(ϕ), du = − sin(ϕ) dϕ.

When ϕ = 0, u = cos(0) = 1.
When ϕ = π/2, u = cos(π/2) = 0.

Now substitute into the integral:∫ π/2

0

cos3(ϕ) sin(ϕ) dϕ =

∫ 0

1

u3(−du) = −
∫ 0

1

u3 du =

∫ 1

0

u3 du.

So, the entire expression for V becomes:

V =
16π

3

[
1−

∫ 1

0

u3 du

]

V =
16π

3

1− (u4

4

) ∣∣∣∣∣
1

0


V =

16π

3

[
1−

(
14

4
− 04

4

)]
V =

16π

3

[
1− 1

4

]
V =

16π

3

(
3

4

)
V =

16π · 3
3 · 4

V = 4π.

Question 11

Given a solid bound by z = 2 and z =
√

x2 + y2, find the mass density if the mass density is directly
proportional to the square of the distance from origin.

Solution
The problem states that the mass density, let’s call it δ(x, y, z), is directly proportional to the square of the
distance from the origin. The square of the distance from the origin to a point (x, y, z) is x2 + y2 + z2.

Therefore, the density function is:

δ(x, y, z) = k(x2 + y2 + z2)

where k is the constant of proportionality.

Given the geometry of the solid (bounded by a cone), it is best to use spherical coordinates (ρ, ϕ, θ). In spherical
coordinates, the square of the distance from the origin is simply ρ2. So, the density function becomes:

δ(ρ, ϕ, θ) = kρ2

The solid is bounded by the plane z = 2 and the cone z =
√
x2 + y2. We must convert these boundaries into

spherical coordinates.

The Cone: In cylindrical coordinates, the cone is z = r. Using the transformations z = ρ cos(ϕ) and
r = ρ sin(ϕ), we get:

ρ cos(ϕ) = ρ sin(ϕ) =⇒ tan(ϕ) = 1 =⇒ ϕ =
π

4

This means the cone forms a constant angle with the positive z-axis. The solid is above this cone, so the angle
ϕ ranges from the z-axis (ϕ = 0) to the cone itself.

0 ≤ ϕ ≤ π

4
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The Plane: The upper bound is the plane z = 2. Using z = ρ cos(ϕ):

ρ cos(ϕ) = 2 =⇒ ρ =
2

cos(ϕ)
=⇒ ρ = 2 sec(ϕ)

The distance ρ starts from the origin (ρ = 0) and extends to this plane.

0 ≤ ρ ≤ 2 sec(ϕ)

The Angle θ: Since the solid is symmetric about the z-axis, the angle θ completes a full revolution.

0 ≤ θ ≤ 2π

The total mass M is the triple integral of the density function over the volume of the solid. The volume element
in spherical coordinates is dV = ρ2 sin(ϕ) dρ dϕ dθ.

M =

∫∫∫
E

δ dV =

∫ 2π

0

∫ π/4

0

∫ 2 sec(ϕ)

0

(kρ2)(ρ2 sin(ϕ)) dρ dϕ dθ

M = k

∫ 2π

0

∫ π/4

0

∫ 2 sec(ϕ)

0

ρ4 sin(ϕ) dρ dϕ dθ

Step 1: Integrate with respect to ρ∫ 2 sec(ϕ)

0

ρ4 sin(ϕ) dρ = sin(ϕ)

[
ρ5

5

]2 sec(ϕ)

0

= sin(ϕ)
(2 sec(ϕ))5

5
=

32

5

sin(ϕ)

cos5(ϕ)
=

32

5
tan(ϕ) sec4(ϕ)

Step 2: Integrate with respect to ϕ ∫ π/4

0

32

5
tan(ϕ) sec4(ϕ) dϕ

We use the substitution u = tan(ϕ), so du = sec2(ϕ) dϕ. We rewrite sec4(ϕ) = sec2(ϕ) sec2(ϕ) = (1 +
tan2(ϕ)) sec2(ϕ) = (1 + u2) sec2(ϕ).

The limits change: when ϕ = 0, u = 0; when ϕ = π/4, u = 1.

32

5

∫ 1

0

u(1 + u2) du =
32

5

∫ 1

0

(u+ u3) du

=
32

5

[
u2

2
+

u4

4

]1
0

=
32

5

(
1

2
+

1

4
− 0

)
=

32

5

(
3

4

)
=

24

5

Step 3: Integrate with respect to θ∫ 2π

0

k

(
24

5

)
dθ =

24k

5
[θ]

2π
0 =

24k

5
(2π) =

48kπ

5

The total mass of the solid is:

M =
48kπ

5

where k is the constant of proportionality.
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Question 12

Find the mass of T , ρ(x, y, z) = y, where T is region bound by y = x2 + z2 and y = 4

Solution
We need to find the mass M of a solid region T . The density is given by the function ρ(x, y, z) = y. The solid
T is bounded by the surfaces:

• A paraboloid opening along the y-axis: y = x2 + z2

• A plane perpendicular to the y-axis: y = 4

The formula for mass is given by the triple integral of the density function over the region T :

M =

∫∫∫
T

ρ(x, y, z) dV

The solid has a circular cross-section in the xz-plane and is symmetric about the y-axis. This suggests using a
modified version of cylindrical coordinates. Let’s define our coordinates as follows:

x = r cos(θ)

z = r sin(θ)

y = y

In this system, x2 + z2 = r2. The volume element is dV = r dy dr dθ.
The bounding surfaces and the density function become:

• Paraboloid: y = r2

• Plane: y = 4

• Density: ρ(r, y, θ) = y

We set up the integral in the order dy dr dθ.

Limits for y: For any point (r, θ) in the xz-plane, the vertical extent of the solid goes from the paraboloid
surface up to the plane.

r2 ≤ y ≤ 4

Limits for r and θ: The projection of the solid onto the xz-plane is a disk. The radius of this disk is found
at the intersection of the two surfaces:

r2 = 4 =⇒ r = 2

Thus, the radius r ranges from the y-axis (r = 0) to the edge of the disk (r = 2). Since the disk is complete,
the angle θ ranges over a full circle.

0 ≤ r ≤ 2

0 ≤ θ ≤ 2π

Now we substitute the density, volume element, and limits into the mass formula.

M =

∫ 2π

0

∫ 2

0

∫ 4

r2
(y) · (r dy dr dθ)

We evaluate the integral from the inside out.

Step 1: Integrate with respect to y∫ 4

r2
ry dy = r

[
y2

2

]4
r2

= r

(
42

2
− (r2)2

2

)
= r

(
16

2
− r4

2

)
= 8r − 1

2
r5

12



Step 2: Integrate with respect to r∫ 2

0

(
8r − 1

2
r5
)

dr =

[
4r2 − r6

12

]2
0

=

(
4(22)− 26

12

)
− (0) = 16− 64

12
= 16− 16

3
=

32

3

Step 3: Integrate with respect to θ∫ 2π

0

32

3
dθ =

32

3
[θ]

2π
0 =

32

3
(2π − 0) =

64π

3

The total mass of the solid is:

M =
64π

3
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