KIX 1001: ENGINEERING MATHEMATICS 1

Tutorial 11: Multiple Integrals in Polar Coordinate & Its Engineering Application

1. In the following exercises, change the cartesian integral into an equivalent polar coordinate integral. Then solve the integral in polar coordinate:

a)
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$$

b)
$$\int_0^2 \int_0^x y \, dy \, dx$$

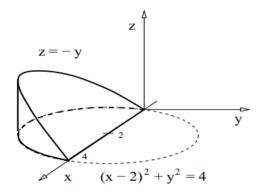
c)
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{2}{(1+x^2+y^2)^2} dy dx$$

d)
$$\int_0^{\ln 2} \int_0^{\sqrt{(\ln 2)^2 - y^2}} e \sqrt{x^2 + y^2} dx dy$$

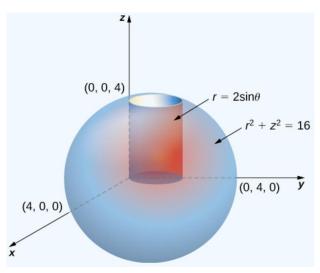
2. Evaluate the $\iint 1 - x^2 - y^2 dA$ using polar coordinates

3. Find the volume below $z = \frac{y^2}{x^2 + y^2}$, above xy-plane and between cylinder $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$

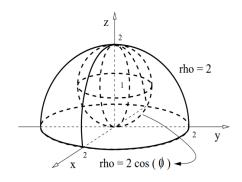
- 4. Find the volume between the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$
- 5. Volume is equal to area only if the height (z) is equal to 1. Find the area of 'R' where 'R' is the region bound by $r=3 \cos\theta$.
- 6. $\iiint y \ dV$, a solid is bound by $z = 4 x^2 y^2$ in the first octant (x = 0, y = 0, z = 0).
- 7. Use cylindrical coordinates to find the volume of a curved wedge cut out from a cylinder $(x^2 2)^2 + y^2 = 4$ by the planes z = 0 z = 0 and z = -y.



8. Consider the region E inside the right circular cylinder with equation $r=2\sin\theta$, bounded below by the $r\theta$ -plane and bounded above by the sphere with radius 4 centered at the origin. Set up a triple integral over this region with a function $f(r,\theta,z)$ in cylindrical coordinates.



- 9. Find the volume of solid bound by z = 2 and $z = \sqrt{x^2 + y^2}$
- 10. Use spherical coordinates to find the volume of the region outside the sphere $\rho = 2 \cos(\phi)$ and inside the sphere $\rho = 2$ with $\phi \in [0, \pi/2]$.



- 11. Given a solid bound by z = 2 and $z = \sqrt{x^2 + y^2}$, find the mass density if the mass density is directly proportional to the square of the distance from origin.
- 12. Find the mass of 'T', $\rho(x, y, z) = y$, where T is region bound by $y = x^2 + z^2$ and y = 4.