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Question 1

Suppose F = ⟨−y, x, z⟩ and S is the part of the sphere x2+y2+z2 = 25 below the plane z = 4, oriented with
the outward-pointing normal (so that the normal at (5, 0, 0) is i ). Compute the flux integral

∫∫
S
curl F.dS

using Stokes’ theorem.

Solution
Again we integrate the line integral over the boundary curve C rather than the flux integral over the (more
complicated) surface S.

The boundary curve is the circle x2 + y2 + 42 = 25 (or x2 + y2 = 9) in the plane z = 4, but a note of caution is
in order.

The natural parameterization (or the one we usually think of) is r(t) = ⟨3 cos(t), 3 sin(t), 4⟩ actually parame-
terizes −C (that is, C with the opposite orientation)!

Why is that? Imagine a person walking this boundary with their head in the normal (outward) direction. The
remaining part of the sphere is on their right if they’re walking counter-clockwise. It should be on their left, so
they should be walking clockwise.

We’ll calculate
∮
−C

F · dr anyway, since we like the parameterisation. In terms of this parametrisation,

F(r(t)) = ⟨−3 sin(t), 3 cos(t), 4⟩
dr(t) = ⟨−3 sin(t), 3 cos(t), 0⟩dt

F(r(t)) · dr(t) = 9dt

Thus, ∫
−C

F · dr =

∫ 2π

0

9dt = 18π

and so,

∫
C

F · dr = −
∫
−C

F · dr = −18π.
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Question 2

Use Stokes’ theorem to evaluate
∫∫

S
cur | F.dS where F = z2i − 3xyj + x3y3k and S is the part of

z = 5− x2 − y2 above the z = 1. Assume that S is oriented upwards.

Solution

In this case the boundary curve C will be where the surface intersects the plane z = 1 and so will be the curve

1 = 5− x2 − y2

x2 + y2 = 4 at z = 1

So, the boundary curve will be the circle of radius 2 that is in the plane z = 1. The parameterization of this
curve is,

r⃗ (t) = 2 cos t i⃗+ 2 sin t j⃗ + k⃗, 0 ≤ t ≤ 2π

The first two components give the circle and the third component makes sure that it is in the plane z = 1.

Using Stokes’ Theorem we can write the surface integral as the following line integral.∫∫
S

curlF⃗ � dS⃗ =

∫
C

F⃗ � d r⃗ =

∫ 2π

0

F⃗ (r⃗ (t)) � r⃗′ (t) dt

So, it looks like we need a couple of quantities before we do this integral. Let’s first get the vector field evaluated
on the curve. Remember that this is simply plugging the components of the parameterization into the vector
field.

F⃗ (r⃗ (t)) = (1)
2
i⃗− 3 (2 cos t) (2 sin t) j⃗ + (2 cos t)

3
(2 sin t)

3
k⃗

= i⃗− 12 cos t sin t j⃗ + 64cos3tsin3t k⃗

Next, we need the derivative of the parameterization and the dot product of this and the vector field.

r⃗′ (t) = −2 sin t i⃗+ 2 cos t j⃗

F⃗ (r⃗ (t)) � r⃗′ (t) = −2 sin t− 24 sin tcos2t

We can now do the integral. ∫∫
S

curlF⃗ � dS⃗ =

∫ 2π

0

−2 sin t− 24 sin tcos2t dt

=
(
2 cos t+ 8cos3t

)∣∣2π
0

= 0
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Question 3

Use Stokes’ theorem to evaluate
∫
c
F.dr where F = z2i + y2j + xk and C is the triangle with vertices

(1, 0, 0), (0, 1, 0) and (0, 0, 1) with counter clockwise rotation.

Solution
We are going to need the curl of the vector field eventually so let’s get that out of the way first.

curlF⃗ =

∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

z2 y2 x

∣∣∣∣∣∣∣∣ = 2z j⃗ − j⃗ = (2z − 1) j⃗

Now, all we have is the boundary curve for the surface that we’ll need to use in the surface integral. However,
as noted above all we need is any surface that has this as its boundary curve. So, let’s use the following plane
with upwards orientation for the surface.

Since the plane is oriented upwards this induces the positive direction on C as shown. The equation of this
plane is,

x+ y + z = 1 ⇒ z = g (x, y) = 1− x− y

Now, let’s use Stokes’ Theorem and get the surface integral set up.∫
C

F⃗ · d r⃗ =

∫∫
S

curlF⃗ � dS⃗

=

∫∫
S

(2z − 1) j⃗ · dS⃗

=

∫∫
D

(2z − 1) j⃗ · ∇f

∥∇f∥
∥∇f∥ dA

Okay, we now need to find a couple of quantities. First let’s get the gradient. Recall that this comes from the
function of the surface.

f (x, y, z) = z − g (x, y) = z − 1 + x+ y

∇f = i⃗+ j⃗ + k⃗

Note as well that this also points upwards and so we have the correct direction.
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Now, D is the region in the xy-plane shown below,

We get the equation of the line by plugging in z = 0 into the equation of the plane. So based on this the ranges
that define D are,

0 ≤ x ≤ 1 0 ≤ y ≤ −x+ 1

The integral is then, ∫
C

F⃗ · d r⃗ =

∫∫
D

(2z − 1) j⃗ ·
(⃗
i+ j⃗ + k⃗

)
dA

=

∫ 1

0

∫ −x+1

0

2 (1− x− y)− 1 dy dx

Don’t forget to plug in for z since we are doing the surface integral on the plane. Finishing this out gives,∫
C

F⃗ · d r⃗ =

∫ 1

0

∫ −x+1

0

1− 2x− 2y dy dx

=

∫ 1

0

(
y − 2xy − y2

)∣∣−x+1

0
dx

=

∫ 1

0

x2 − x dx

=

(
1

3
x3 − 1

2
x2

)∣∣∣∣1
0

= −1
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Question 4

Verify Stokes’ Theorem for the field F =
〈
x2, 2x, z2

〉
on the ellipse S =

{
(x, y, z) : 4x2 + y2 ≤ 4, z = 0

}
Solution
We compute both sides in

∮
C
F · dr =

∫∫
S
(∇× F) · ndσ

We start computing the circulation integral on the ellipse x2 + y2

22 = 1. We need to choose a counterclockwise
parametrization, hence the normal to S points upwards.
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We choose, for t ∈ [0, 2π],

r(t) = ⟨cos (t), 2 sin(t), 0⟩

Therefore, the right-hand rule normal n to S is n = ⟨0, 0, 1⟩

The circulation integral is:∮
C

F · dr =

∫ 2π

0

F(t) · r′(t)dt

=

∫ 2π

0

⟨cos2(t), 2 cos(t), 0⟩ · ⟨− sin(t), 2 cos(t), 0⟩dt

=

∫ 2π

0

[− cos2(t) sin(t) + 4 cos2(t)]dt

The substitution on the first term u = cos(t) and du = − sin(t)dt, implies
∫ 2π

0
− cos2(t) sin(t)dt =

∫ 1

1
u2du = 0.∮

C

F · dr =

∫ 2π

0

4 cos2(t)dt =

∫ 2π

0

2[1 + cos(2t)]dt

Since

∫ 2π

0

cos(2t)dt = 0, we conclude that

∮
C

F · dr = 4π

We now compute the right-hand side in Stokes’ Theorem.

I =

∫∫
S

(∇× F) · ndσ

∇× F =

∣∣∣∣∣∣∣∣
i j k

∂x ∂y ∂z

x2 2x z2

∣∣∣∣∣∣∣∣ ⇒ ∇× F = ⟨0, 0, 2⟩

S is the flat surface {x2 + y2

22 ≤ 1, z = 0}, so dσ = dxdy

Then,

∫∫
S

(∇× F) · ndσ =

∫ 1

−1

∫ 2
√
1−x2

−2
√
1−x2

⟨0, 0, 2⟩ · ⟨0, 0, 1⟩dydx

The right-hand side above is twice the area of the ellipse, Since that an ellipse
x2

a2
+

y2

b2
= 1 has area πab, we

obtain ∫∫
S

(∇× F) · ndσ = 4π
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Question 5

Verify Stokes’ Theorem for F =
〈
y2,−x, 5z

〉
and S is the paraboloid z = x2+y2 with the circle x2+y2 = 1

as its boundary.

Solution

Surface integral,

∇× F⃗ = curl F⃗ =

∣∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

y2 −x 5z

∣∣∣∣∣∣∣∣
= î(0− 0)− ĵ(0− 0) + k̂(−1− 2y)

= (−1− 2y)k̂

n⃗ = ⟨fx, fy, 1⟩ or ⟨−fx,−fy, 1⟩
= ⟨−2x,−2y, 1⟩

(∇× F⃗ ) · n⃗ = 0(−2x) + 0(−2y) + (−1− 2y)(1) = −1− 2y

∫∫
R

(∇× F⃗ ) · n⃗dxdy =

∫∫
R

(−1− 2y)dxdy

R is region in side C, a unit circle.

Switching to polar coordinates:

x = r cos θ, y = r sin θ, r ∈ [0, 1], θ ∈ [0, 2π]

Hence,

=

∫ 2π

0

∫ 1

0

(−1− 2r sin θ)rdrdθ

=

∫ 2π

0

(
−r2

2
− 2 sin θ

(
r3

3

))∣∣∣∣1
0

dθ

=

∫ 2π

0

(
−1

2
− 2

3
sin θ

)
dθ

=

(
−1

2
θ +

2

3
cos θ

)∣∣∣∣2π
0

= −1

2
(2π − 0) +

2

3
(cos(2π)− cos 0)

= −π
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Line integral, ∮
C

F⃗ · T⃗ ds =
∫
C

Mdx+Ndy + Pdz

=

∫
C

y2dx− xdy + 5zdz

C: unit circle → Switch to polar coordinates,

x = cos θ, y = sin θ, z = 1

dx = − sin θdθ, dy = cos θdθ, dz = 0

Hence,

=

∫ 2π

0

(sin2 θ)(− sin θ)dθ − cos2 θdθ + 0dθ

=

∫ 2π

0

(− sin3 θ − cos2 θ)dθ

=

∫ 2π

0

(− sin3 θ)dθ −
∫ 2π

0

cos2 θdθ

= −1

2

∫ 2π

0

(1 + cos(2θ))dθ

= −1

2

(
θ +

sin(2θ)

2

)∣∣∣∣2π
0

= −1

2
(2π − 0)

= −π

Question 6

Use Stokes’ Theorem to calculate
∫∫

(∇× F ) · n̂dS for F =
〈
xz2, x3, cos(xz)

〉
where S is the part of the

ellipsoid xx2 + y2 + 3z2 = 1 below the xy-plane and n̂ is the lower normal.

Solution ∫∫
S

(∇× F⃗ ) · n̂dS =

∮
C

F⃗ · T⃗ dS

=

∫
C

Mdx+Ndy + Pdz

=

∫
C

xz2dx+ x3dy + cos(xz)dz

Using polar coordinates,

z = 0, x = cos θ, y = sin θ

dz = 0, dx = − sin θdθ, dy = cos θdθ

Hence,

=

∫ 2π

0

cos θ(0)(− sin θdθ) + cos3 θ(cos θ)dθ + 0

=

∫ 2π

0

cos4 θdθ =
3π

4
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Question 7

Use Stoke’s Theorem to evaluate the line integral
∫
F · drc where F is the vector F =

(
4ex

2 − y
)
i +(

16 sin
(
y2
)
+ 3x

)
j + (4y − 2x− ez)k and C is the curve of intersection of the cylinder x2 + y2 = 16 and

the plane z = 2x+ 4y and C is oriented in a counterclockwise direction when viewed from above.

Solution
The curl of F is computed as,

curl F =

∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

4ex
2 − 1y 16 sin(y2) + 3x 4y − 2x− ez

∣∣∣∣∣∣∣∣
= −4i− 2j+ 4k

Now, writing the plane z = 2x+ 4y as the level surface G(x, y, z) = −2x− 4y + z = 0,

NdS = ∇GdA = ⟨−2,−4, 1⟩dA

Applying Stokes’ theorem, ∫
C

F · dr =

∫
S

∫
⟨−4,−2, 4⟩ · ⟨−2,−4, 1⟩dA

=

∫
R

∫
[(−4)(−2) + (−2)(−4) + (4)(1)]dA

=

∫
R

∫
20dA

= (20)(Area of R)

= (20)(16π) = 320π

Question 8

Evaluate the line integral of F (x, y, z) = ⟨xy, 2z, 3y⟩ over the curve C that is the intersection of the
cylinder x2 + y2 = 9 with the plane x+ z = 5.

Solution
To describe the surface S enclosed by C, we use the parameterisation

x = u cos v, y = u sin v, z = 5− u cos v, 0 ≤ u ≤ 3, 0 ≤ v ≤ 2π

Using ru = ⟨cos v, sin v,− cos v⟩ and rv = ⟨−u sin v, u cos v, u sin v⟩, we obtain,

ru × rv = ⟨u, 0, u⟩

Compute the curl,

curl F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
× ⟨xy, 2z, 3y⟩ = ⟨1, 0, x⟩

Let D be the domain of the parameter,

D = {(u, v)|0 ≤ u ≤ 3, 0 ≤ v ≤ 2π}
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Using Green’s Theorem, ∫
C

F · dr =

∫∫
S

curl F · dS

=

∫∫
D

curl F(r(u, v)) · (ru × rv)dA

=

∫ 3

0

∫ 2π

0

⟨1, 0, u cos v⟩ · ⟨u, 0, u⟩dA

=

∫ 3

0

∫ 2π

0

u+ u2 cos vdvdu

=

∫ 3

0

(uv + u2 sin v)|2π0 dvdu

= 2π

∫ 3

0

udvdu

= 2π
u2

2

∣∣∣∣3
0

= 9π

Question 9

Evaluate
∫∫

(∇×F ) ·ndS where F (x, y, z) = ⟨yz, xz, xy⟩ and S is the part of the sphere x2 + y2 + z2 = 4
that lies inside the cylinder x2 + y2 = 1 and above the xy-plane.

Solution

Surface S is bounded by a circle formed by the intersection of the sphere of radius 2 and the cylinder of radius
1.

We can describe ∂S using the vector-valued function,

r(t) = ⟨cos t, sin t,
√
3⟩, 0 ≤ t ≤ 2π

Using Stokes’ Theorem, ∫∫
S

(∇× F) · ndS =

∮
∂S

F · dr

=

∫ 2π

0

F(cos t, sin t,
√
3) · ⟨− sin t, cos t, 0⟩dt

=
√
3

∫ 2π

0

(cos2 t− sin2 t)dt

=
√
3

∫ 2π

0

cos 2tdt

= 0
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