KIX1001: ENGINEERING MATHEMATICS 1 <u>TUTORIAL14: STOKES' THEOREM</u>

- 1. Suppose $\mathbf{F} = \langle -y, x, z \rangle$ and *S* is the part of the sphere $x^2 + y^2 + z^2 = 25$ below the plane z=4, oriented with the outward-pointing normal (so that the normal at (5,0,0) is i). Compute the flux integral $\iint_{S} curl \mathbf{F}.d\mathbf{S}$ using Stokes' theorem [Ans: -18π]
- 2. Use Stokes' theorem to evaluate $\iint_{S} curl \mathbf{F}.d\mathbf{S}$ where $F = z^2 \mathbf{i} 3xy\mathbf{j} + x^3y^3\mathbf{k}$ and S is the part of $z = 5 x^2 y^2$ above the z=1. Assume that S is oriented upwards. [Ans: 0]
- 3. Use Stokes' theorem to evaluate $\int_{c} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = z^{2}\mathbf{i} + y^{2}\mathbf{j} + x\mathbf{k}$ and *C* is the triangle with vertices (1,0,0), (0,1,0) and (0,0,1) with counter clockwise rotation.

- 4. Verify Stokes' Theorem for the field $F = \langle x^2, 2x, z^2 \rangle$ on the ellipse $S = \{(x, y, z): 4x^2 + y^2 \le 4, z = 0\}$ [Ans: 4π]
- 5. Verify Stokes' Theorem for F = ⟨y², -x, 5z⟩ and S is the paraboloid z = x²+y² with the circle x² + y² = 1 as its boundary. [Ans: -π]
- 6. Use Stokes' Theorem to calculate $\iint (\nabla \times F) \cdot \hat{n}dS$ for $F = \langle xz^2, x^3, \cos(xz) \rangle$ where *S* is the part of the ellipsoid $x x^2 + y^2 + 3z^2 = 1$ below the *xy*-plane and \hat{n} is the lower normal. [Ans: $-\frac{3\pi}{4}$]
- 7. Use Stoke's Theorem to evaluate the line integral ∫ F ⋅ dr c where F is the vector F = (4e^{x²} y)i + (16 sin(y²) + 3x)j + (4y 2x e^z)k and C is the curve of intersection of the cylinder x² + y² = 16 and the plane z = 2x + 4y and C is oriented in a counterclockwise direction when viewed from above. [Ans: 320π]

[[]Ans: -1/6]

- 8. Evaluate the line integral of $F(x, y, z) = \langle xy, 2z, 3y \rangle$ over the curve *C* that is the intersection of the cylinder $x^2 + y^2 = 9$ with the plane x + z = 5. [Ans: 9π]
- 9. Evaluate $\iint (\nabla \times F) \cdot ndS$ where $F(x, y, z) = \langle yz, xz, xy \rangle$ and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the *xy*-plane. [Ans: 0]