KIX 1001: ENGINEERING MATHEMATICS 1 Tutorial 3: Vector Algebra I

- 1. Sketch the two points P(3, -1, 5) and Q(2, 1, -1) in three-dimensional space and find the distance between the two points. (Ans: $\sqrt{41}$)
- 2. For the position vector $a = \langle 2, 4 \rangle$, compute $3a, \frac{1}{2}a$, and -2a. Sketch all four vectors on the same axis system. Discuss the effects of scalar multiplication on the magnitude and direction of the original vector.
- 3. Two vectors are given as $\overrightarrow{OP} = \underline{i} + 3\underline{j} 7\underline{k}$ and $\overrightarrow{OQ} = 5\underline{i} 2\underline{j} + 4\underline{k}$
 - i. Find the unit vector in the direction of \overrightarrow{PQ} (Ans: $\frac{1}{\alpha\sqrt{2}}(4, -5, 11)$)
 - ii. Find the direction cosines of \overrightarrow{PQ}
- iii. Find the vector with magnitude of 5 in the direction of \overrightarrow{QP} in polar form (Ans: $5(\cos(108.32^\circ), \cos(66.87^\circ), \cos(149.8^\circ))$
- 4. Two points are given as A(1,2) and B(3,4).
 - i. Find the vector equation of line *L* that is passing through point *A* and *B*. (Ans: (1,2) + t(2,2))
 - ii. Sketch the line for t = 0: 1: 5 and indicate its direction and initial point.
- 5. If a unit vector \vec{a} makes an angle of $\pi/3$ with i, $\pi/4$ with j and acute angle θ with k, find θ and the components of \vec{a} . (Ans: 60° or 120°, $\frac{1}{2}i + \frac{1}{\sqrt{2}}j + \frac{1}{2}k$ or $\frac{1}{2}i + \frac{1}{\sqrt{2}}j \frac{1}{2}k$)
- 6. If \vec{a} is a unit vector and $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 8$, find $|\vec{x}|$. (Ans: 3)
- 7. Find the gradient for $f = (2x^2 + y)/(x^2 y^2)$. (Ans: $\frac{2xy(-2y-1)}{(x^2 y^2)^2} \mathbf{i} + \frac{x^2 + 4x^2y + y^2}{(x^2 y^2)^2} \mathbf{j}$)
- 8. Calculate the divergence of the following vector fields of F(x, y) and G(x, y);

(a)
$$F = y^{3} i + xy j$$
 (Ans: x)
(b) $G = \frac{4y}{x^{2}} i + \sin(y) j + 3k$ (Ans: $-\frac{8y}{x^{3}} + \cos(y)$)
(c) $G = e^{x} i + \ln(xy) j + e^{xyz} k$ (Ans: $e^{x} + \frac{1}{y} + xy e^{xyz}$

9. Calculate the curl of the following vector fields of F(x, y, z);

(a)
$$F = 3x^{2}i + 2zj - xk$$
 (Ans: $-2i + j$)
(b) $F = y^{3}i + xyj - zk$ (Ans: $(y - 3y^{2})k$)
(c) $F = (1 + y + z^{2})i + (e^{xyz})j - (xyz)k$
(Ans: $(xz - xye^{xyz})i + (2z - yz)j + (yze^{xyz} - 1)k$)