KIX 1001: ENGINEERING MATHEMATICS 1

Tutorial 7: Matrix Algebra for Homogeneous Linear Algebraic System

1. The following linear algebraic equations represents the 3 dof mass spring systems below:

Determine the smallest eigenvalue and the corresponding eigenvector for the eigenvalue/ eigenvector problem if $k_1 = k_4 = 15 \frac{N}{m}$, $k_2 = k_3 = 35 \frac{N}{m}$, and $m_1 = m_2 = m_3 = 1.5 kg$. Then, draw the eigenvector.

- 2. Continue from Q1, determine the second largest eigenvalue and the corresponding normalised eigenvector. Then, draw the eigenvector.
- 3. Continue from Q1, determine the largest eigenvalue and the corresponding unscaled eigenvector. Then, draw the eigenvector.
- 4. Combining the results obtained from Q1-Q4, obtain the eigenvector matrix, P and diagonalize the following matrix. Comment the relationship between the diagonal matrix and the eigenvalue.

$$\begin{bmatrix} \frac{k_1+k_2}{m_1} & -\frac{k_2}{m_1} & 0\\ -\frac{k_2}{m_2} & \frac{k_2+k_3}{m_2} & -\frac{k_3}{m_2}\\ 0 & -\frac{k_3}{m_2} & \frac{k_3+k_4}{m_3} \end{bmatrix}$$

5.Determine $\begin{bmatrix} \frac{k_1 + k_2}{m_1} & -\frac{k_2}{m_1} & 0\\ -\frac{k_2}{m_2} & \frac{k_2 + k_3}{m_2} & -\frac{k_3}{m_2}\\ 0 & -\frac{k_3}{m_2} & \frac{k_3 + k_4}{m_3} \end{bmatrix}^{50}$ and comment on the change of it's eigenvalue

and eigenvector, as compared to Q4.

6. Given $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ and $|\mathbf{B}| = 2$ has an eigenvalue of 2. Find the remaining

eigenvalues and develop the characteristic equation without developing the eigenvalue problem and without performing the determinant.

7. Continue Q6, using Cayley-Hamilton theorem to verify that:

 $\mathbf{B}^{-1} = \frac{1}{2}\mathbf{B}^2 + (-2)\mathbf{B} + (\frac{5}{2})\mathbf{I}$ and $\mathbf{B}^6 = [(57)\mathbf{B}^2 + (-108)\mathbf{B} + 52\mathbf{I}]$. Then, compute the \mathbf{B}^5 via the theorem.

- 8.Explain why the following equation : $B^5 = PD^5P^{-1}$ is not working to solve the Q7 problem?
- 9.Based on Q7 and Q8, discuss the advantage and disadvantage of diagonalization formula versus the Cayley-Hamilton theorem in solving the power of a matrix.
- 10. Find all the eigenvalue and normalized eigenvectors in terms of eigenvalue matrix and eigenvector matrix for the matrix **C**.

	[0]	1	1]
C =	1	0	1
	l 1	1	0]

Then, verify the eigenvalue matrix and eigenvector matrix if they satisfy the eigenvalue/eigenvector problem, i.e. $(\mathbf{C} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$.

Q1: Solution: *Eigenvector*,
$$\begin{cases} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix}_{\lambda=6.3350} = \begin{cases} 1 \\ 1.1571 \\ 1 \end{cases}$$

Q2: Solution: *Normalised Eigenvector*, $\begin{cases} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix}_{\lambda=33.3333, \text{normalised}} = \frac{1}{\sqrt{2}} \begin{cases} -1 \\ 0 \\ 1 \\ \end{cases} = \begin{cases} -0.7071 \\ 0 \\ 0 \\ 0 \\ 0.7071 \end{cases}$
Q3 Solution: *Eigenvector*, $\begin{cases} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix}_{\lambda=73.6650} = \begin{cases} -1 \\ 1.7285 \\ 1 \\ \end{cases}$
Q4 Solution: $\mathbf{D} = \begin{bmatrix} 6.335 & 0 & 0 \\ 0 & 33.333 & 0 \\ 0 & 0 & 73.665 \end{bmatrix}$
Q5 Solution:

$$\mathbf{A}^{50} = 10^{93} \begin{bmatrix} 0.46255450 & -0.79952578 & 0.46255450 \\ -0.79952578 & 1.38198087 & -0.79952578 \\ 0.46255450 & -0.79952578 & 0.46255450 \end{bmatrix}$$

Q6 Solution:

$$\lambda^{3} + (-4)\lambda^{2} + (5)\lambda - 2 = 0$$

Q7 Solution:
$$\mathbf{B}^5 = \begin{bmatrix} 1 & 10 & 145 \\ 0 & 1 & 31 \\ 0 & 0 & 32 \end{bmatrix}$$

Q8 Hint: Check the eigenvector matrix & its inverse of the diagonalization formula.

Q9 Hint: Compare the efficiency in computing the power of matrix; Compare the efficiency in developing the formulation; Compare the complexity of data requires for executing the method; Compare the complexity of executing the method.

Q10:

Eigenvector or modal matrix,
$$\mathbf{P} = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{2} & 1/\sqrt{3} \\ 1/\sqrt{2} & 0 & 1/\sqrt{3} \\ 0 & 1/\sqrt{2} & 1/\sqrt{3} \end{bmatrix}$$

Eigenvalues or spectral matrix, $\mathbf{D} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

Hint: For verification,

 $\mathbf{CP} = \mathbf{PD}$