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1.1 Functions and Derivatives  
1.1.1 LIMIT OF A FUNCTION 

Why should we learn limits? 

• Limits are needed to define differential calculus. Every application of differential equation assumes that the 

limits defining the terms in the equations exist. 

• Limits are needed in integral calculus because an integral is defined over a range of variables, and this form the 

limits in the integrations. 

• Limits are needed in many real-life calculations, e.g. calculation of continuously compounded interest, margin 

of error, half-life of drugs, or in any calculation where the rate of change is important. This is because the rate 

of change is the derivative of a representative function, and the derivative (differentiation) are built on the 

foundation concept of a limit. 

What is limit in calculus? 

• In mathematics, a limit is the value that a function or sequence “approaches” as the input or index approaches 

some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, 

derivatives, and integrals. 

• Note that, using the formal definition, there is no need to evaluate f(a); indeed, f(a) may or may not equal L. 

The limiting value of 𝑓 as 𝑥 → 𝑎 depends only on nearby values! 

 

 

Suppose that the function f(x) is defined for all values of x near a, but not necessarily at a.  As x 

approaches a (without attaining the value a), f(x) approaches the number L. Then we can say that 

L is the limit of f(x) as x approaches a, and write 

lim ( )
x a

f x L
→

=
 

 
Figure 1 

A function f has limit 𝐿 as 𝑥 approaches 𝑎 if and only if f(x) has both a left and a right limit 
as 𝑥 approaches 𝑎 and these one-sided limits both equal 𝐿. That is:  

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 ⟺ lim
𝑥→𝑎+

𝑓(𝑥) = lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿 
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1.1.2 LIMIT LAWS 

We now look at the limit laws which define the individual properties of limits. Suppose that C is a constant and the 

limits lim
𝑥→𝑎

𝑓(𝑥) and lim
𝑥→𝑎

𝑔(𝑥) exist. Then 

Limit Law Limit Law in symbols 

Sum law lim
𝑥→𝑎

[𝑓(𝑥) + g(x)] = lim
𝑥→𝑎

𝑓(𝑥) + lim
𝑥→𝑎

g(𝑥) 

Difference law lim
𝑥→𝑎

[𝑓(𝑥) − g(x)] = lim
𝑥→𝑎

𝑓(𝑥) − lim
𝑥→𝑎

g(𝑥) 

Constant multiple law lim
𝑥→𝑎

𝑐𝑓(𝑥) = 𝑐 lim
𝑥→𝑎

𝑓(𝑥) 

Product law lim
𝑥→𝑎

[𝑓(𝑥)g(x)] = lim
𝑥→𝑎

𝑓(𝑥) . lim
𝑥→𝑎

g(𝑥) 

Quotient law lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

lim
𝑥→𝑎

𝑓(𝑥)

lim
𝑥→𝑎

g(𝑥)
 𝑖𝑓 lim

𝑥→𝑎
g(𝑥) ≠ 0 

Power law lim
𝑥→𝑎

[𝑓(𝑥)]
𝑛

= [lim
𝑥→𝑎

𝑓(𝑥)]𝑛 

 

Questions: 

1. What is limit of a constant function? 

 lim
𝑥→𝑎

𝑐 =  𝑐 

 

2. What is the limit of a linear function?  

lim
𝑥→𝑎

x = a 
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1.1.3 EVALUATE LIMIT OF A FUNCTION 

 
If the function (be it linear, polynomial or rational function) is continuous at x = a, we can use “direct substitution” to 

evaluate a limit. 

Example 1.1.1:  

Evaluate the  lim
𝑥→3

(2𝑥 + 5). 

Solution:   𝑙𝑖𝑚
𝑥→3

(2𝑥 + 5) =  𝑙𝑖𝑚
𝑥→3

(2𝑥) + 𝑙𝑖𝑚
𝑥→3

(5) =  2𝑙𝑖𝑚
𝑥→3

(𝑥) + 𝑙𝑖𝑚
𝑥→3

(5) = 2(3) + 5 = 11 

 

Example 1.1.2 

Evaluate the  lim
𝑥→3

(5𝑥2). 

Solution:   lim
𝑥→3

(5𝑥2) = 5lim
𝑥→3

(𝑥2) =  5(3)2 = 45  

 

Example 1.1.3 

Evaluate the  lim
𝑥→−2

(𝑥2+8x−20)

𝑥−2
. 

Solution:   𝑙𝑖𝑚
𝑥→−2

𝑥2+8𝑥−20

𝑥−2
=  

(−𝟐)𝟐+𝟖(−𝟐)−𝟐𝟎

(−𝟐)−𝟐
=  

𝟒−𝟏𝟔−𝟐𝟎

−𝟒
=

−𝟑𝟐

−𝟒
=  𝟖  

 

As we have seen, we may easily evaluate the limits of polynomials and limits of some (but not all) rational functions 

by direct substitution. However, it is certainly possible for lim
𝑥→𝑎

𝑓(𝑥)  to exist when 𝑓(𝑎)  is undefined, i.e. 𝑓  is 

discontinuous at a. For example: 

 

Figure 2 
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If for all 𝑥 ≠ 𝑎, 𝑓(𝑥) = 𝑔(𝑥) over some open interval containing a, then lim
𝑥→𝑎

𝑓(𝑥) = lim
𝑥→𝑎

𝑔(𝑥). Usually， we can 

evaluate the limit by factoring or by rationalizing.  

Example 1.1.4: Evaluate by factoring 

Evaluate the  lim
𝑥→1

(𝑥2−1)

𝑥−1
. 

Solution:   𝑙𝑖𝑚
𝑥→1

(𝑥2−1)

𝑥−1
=  𝑙𝑖𝑚

𝑥→1

(𝑥−1)(𝑥+1)

𝑥−1
=  𝑙𝑖𝑚

𝑥→1
(𝑥 + 1) = 1 + 1 =  2 

 

Example 1.1.5：Evaluate by rationalizing 

Evaluate 𝑙𝑖𝑚
𝑡→0

√𝑡2+9−3

𝑡2  

 

Solution:  𝑙𝑖𝑚
𝑡→0

√𝑡2+9−3

𝑡2 =  𝑙𝑖𝑚
𝑡→0

√𝑡2+9−3

𝑡2  ×  
√𝑡2+9+3

√𝑡2+9+3
   

                                         =  𝑙𝑖𝑚
𝑡→0

(𝑡2+9)−9

𝑡2√𝑡2+9+3
 

= 𝑙𝑖𝑚
𝑡→0

1

√𝑡2 + 9 + 3
 

= 𝑙𝑖𝑚
𝑡→0

1

√(0)2+9+3
=  

1

6
  

Example 1.1.6:  

Find 𝑙𝑖𝑚
𝑥→4

√𝑥−2

𝑥−4
  

 

Solution: 𝑙𝑖𝑚
𝑥→4

√𝑥−2

𝑥−4
= 𝑙𝑖𝑚

𝑥→4

√𝑥−2

(√𝑥)2−22 =  𝑙𝑖𝑚
𝑥→4

√𝑥−2

(√𝑥+2)(√𝑥−2)
= 𝑙𝑖𝑚

𝑥→4

1

(√𝑥+2)
=  

1

(√4+2)
=

1

4
 

Note: This problem can also be solved by rationalizing, please try on your own. 

 

Example 1.1.7: 

Find 𝑙𝑖𝑚
𝑥→2

√𝑥+7−3

√𝑥+2−2
. 

 

Solution: 𝑙𝑖𝑚
𝑥→2

√𝑥+7−3

√𝑥+2−2
=  𝑙𝑖𝑚

𝑥→2

√𝑥+7−3

√𝑥+2−2
×

√𝑥+2+2

√𝑥+2+2
×

√𝑥+7+3

√𝑥+7+3
= 𝑙𝑖𝑚

𝑥→2

(𝑥−2)√𝑥+2+2

(𝑥−2)√𝑥+7+3
=   

√2+2+2

√2+7+3
=

4

6
=

2

3
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1.1.4 LIMIT FOR TRIGONOMETRIC FUNCTION 

We can replace a limit problem with another that may be simpler to solve. L'Hospital's Rule tells us that if we have an 

indeterminate form 0/0 or ∞/∞, all we need to do is differentiate the numerator and differentiate the denominator 

and then take the limit.  

Suppose that we have one of the following cases, 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

0

0
   or  lim

𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

±∞

±∞
 

where a can be any real number, infinity or negative infinity. In these cases, we have 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
  according to L'Hospital's Rule 

 

For example, evaluate lim
𝜃→0

 (
𝑠𝑖𝑛 𝜃

𝜃
). We can see that this is a 0/0 indeterminate form so let’s just apply L'Hospital's 

Rule 

lim
𝜃→0

 (
𝑠𝑖𝑛 𝜃

𝜃
) =  lim

𝜃→0

(𝑠𝑖𝑛 𝜃)′

𝜃′
=  lim

𝜃→0
 (

𝑐𝑜𝑠 𝜃

1
) =

1

1
= 1 

lim
𝑥→0

 (
𝑠𝑖𝑛 𝜃

𝜃
) plays an important role in solving for other trigonometric limits. 

 

Example 1.1.8 

Find lim
𝑥→0

 (
𝑠𝑖𝑛 3𝑥

4𝑥
) 

Solution:   lim
𝑥→0

 (
𝑠𝑖𝑛 3𝑥

4𝑥
) = lim

𝑥→0
 

(
𝑠𝑖𝑛 3𝑥

3𝑥
)×3𝑥

(
𝑠𝑖𝑛 4𝑥

4𝑥
)×4𝑥

=  lim
𝑥→0

 
3

4
=

3

4
  

Alternatively, use L'Hospital's Rule, lim
𝑥→0

 (
𝑠𝑖𝑛 3𝑥

4𝑥
) = lim

𝑥→0
 

(𝑠𝑖𝑛 3𝑥)′

(4𝑥)′
= lim

𝑥→0
 

3𝑐𝑜𝑠3𝑥

4𝑐𝑜𝑠4𝑥
=  

3𝑐𝑜𝑠(0)

4cos (0)
=

3

4
 

                                                                       

Example 1.1.9 

Find lim
𝑥→0

𝑥𝑐𝑜𝑡(2𝑥)      

 

Solution:     lim
𝑥→0

𝑥𝑐𝑜𝑡(2𝑥) = lim
𝑥→0

 
𝑥𝑐𝑜𝑠2𝑥

𝑠𝑖𝑛2𝑥
 = lim

𝑥→0
 

𝑥𝑐𝑜𝑠2𝑥

𝑠𝑖𝑛2𝑥
×

2

2
= lim

𝑥→0
 

1

2
𝑐𝑜𝑠2𝑥 = 

1

2
𝑐𝑜𝑠 0 =  

1

2
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1.1.5 CONTINUITY OF FUNCTIONS  

Below shows several continuous functions (Figure 3). These functions are said to be continuous since their graphs 

have no “breaks”, “gaps” or “holes”. 

 
Figure 3: Continuous functions 

The graph of discontinuous function has breaks, gaps or points at which the function is undefined. For example, the 

function below (Figure 4) is undefined at x=2, i.e. the graph has a hole at x=2 and therefore is said to be 

discontinuous. 

 
Figure 4: Discontinuous function with a gap at x=2. 

A discontinuous function may also have different left- and right-hand limits as shown by the Figure 5, therefore the 

limit at x=3 does not exist.  

 
Figure 5: A discontinuous functions with different left- and right-hand limits. 
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In other case (Figure 6), the limits of the function at x=2 exist but is not equal to the value of the function at x=2. 

This function is also discontinuous. 

  
Figure 6: A discontinuous functions where the limits of the function at x=2 exist but is not equal to the value of the 

function at x=2. 

Figure 7 shows a function whereby the limits of the function at x=3 does not exist since the function either increases 

or decreases indefinitely at both sides of x=3. This is also a discontinuous function. 

 
Figure 7: Limits at x=3 is nonexistence as the left- and right-hand sides of the function increases or decreases 

indefinitely. 

 

Taking into consideration all the information gathered from the examples of continuous and discontinuous 

functions shown above, we define a continuous function as follows. 

Function f is continuous at a point a if the following conditions are satisfied: 

1. f(a) is defined 

2. lim
𝑥→𝑎

𝑓(𝑥) exists 

3. lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎) 
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1.1.6 DERIVATIVES: BASIC IDEAS AND DEFINITIONS  

The computation of the slope of a tangent line, the instantaneous rate of change of a function, and the instantaneous 

velocity of an object at 𝑥 = 𝑎 all required us to compute the following limit: 

lim
𝑥→𝑎

𝑓(𝑥)−f(a)

𝑥−𝑎
   (1) 

We also saw that with a small change of notation this limit could also be written as, 

lim
ℎ→0

𝑓(𝑎+ℎ)−f(a)

ℎ
                 (2) 

This is such an important limit, and it arises in so many places that we give it a name. We call it a derivative， which 

tells us the slope or rate of change of a function at any point. Here is the official definition of the derivative: 

The derivative of 𝑓(𝑥) with respect to x is the function 𝑓′(𝑥) and is defined as, 

𝑓′(𝑥) =  lim
h→0

𝑓(𝑥+ℎ)−f(x)

ℎ
               (3) 

Note that we replaced all the a’s in (1) with x’s to acknowledge the fact that the derivative is really a function as well. 

We often “read” 𝑓′(𝑥) as “f prime of x”. 

Example 1.1.10 

Find the derivative of the following function using the definition of the derivative. 

𝑓(𝑥) = 2𝑥2 − 16𝑥 + 35 

 

Solution:    All we really need to do is to plug this function into the definition of the derivative, (1.63), and do some 

algebra.  

𝑓′(𝑥) =  lim
h→0

𝑓(𝑥 + ℎ) − f(x)

ℎ
 

=  lim
h→0

2(𝑥 + ℎ)2 − 16(x + h) + 35 − (2𝑥2 − 16x + 35)

ℎ
 

=  lim
h→0

2𝑥2 + 4xh + 2ℎ2 − 16x − 16h + 35 − 2𝑥2 + 16x − 35

ℎ
 

=  lim
h→0

ℎ(4𝑥 + 2h − 16)

ℎ
 

=  lim
h→0

4𝑥 + 2h − 16 

= 4𝑥 − 16 
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1.1.7 RULES OF DIFFERENTIATIONS  

Here are useful rules to help you work out the derivatives of many functions. Note: the little mark ’ means derivative 

of, and f and g are functions. 
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1.1.8 CHAIN RULE  

A function is composite if you can write it as 𝑓(𝑔(𝑥)). In other words, it is a function within a function. 

For example, 𝑐𝑜𝑠(𝑥2) is composite, because if we let 𝑓(𝑥) = cos(𝑥) and g(𝑥) = 𝑥2, then cos(𝑥2) = 𝑓(𝑔(𝑥)). 𝑔 is 

the function within 𝑓, so we call 𝑔 the “inner” function and 𝑓 the “outer” function. 

In calculus, the chain rule is a formula that expresses the derivative of a composite function (consisting of two 

differentiable functions 𝑓  and 𝑔 ) in terms of the derivatives of 𝑓  and 𝑔 . In other words, we use chain rule to 

differentiate a composite function. The chain rule states that if ℎ(𝑥) = 𝑓(𝑔(𝑥)), 

ℎ′(𝑥) = 𝑓′(𝑔(𝑥)) ∙ 𝑔′(𝑥) （Lagrange’s notation） 

Or  
𝑑ℎ

𝑑𝑥
=

𝑑𝑓

𝑑𝑔
∙

𝑑𝑔

𝑑𝑥
  (Leibniz’s notation) 

 

Let's see how the chain rule is applied by differentiating ℎ(𝑥) = (5 − 6𝑥)5. Notice that h is a composite function: 

 

which can be expressed as 𝑔(𝑥) = 𝑢 = 5 − 6𝑥 to represent the inner function and 𝑓(𝑢) = 𝑢5 to represent the 

outer function. Because ℎ is a composite function, we can differentiate it using the chain rule. Before applying the 

rule, let's find the derivatives of the inner and outer functions: 

𝑔′(𝑥) = −6 

𝑓′(𝑢) = 5𝑢4 

Now let’s apply chain rule: 

ℎ′(𝑥) = 𝑓′(𝑢) ∙ 𝑔′(𝑥) 

= 5(5 − 6)4 ∙ (−6) 

= −30(5 − 6)4 

 

Example 1.1.11 

Find 𝐹′(𝑥) if 𝐹(𝑥) =  √𝑥2 + 1 

Solution: 

We can express 𝐹 as 𝐹(𝑥) =  √𝑥2 + 1 = 𝑓(𝑔(𝑥))  where  𝑓(𝑢) = √𝑢  and 𝑔(𝑥) = 𝑢 = 𝑥2 + 1  

Since 𝑓’(𝑢)  =  
1

2
 𝑢−1/2 =  

1

2√𝑢
   and  𝑔′(𝑥) = 2𝑥 
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Therefore, 𝐹′(𝑥) = 𝑓′(𝑔(𝑥)) ∙ 𝑔′(𝑥) =
1

2√𝑢
 ∙ 2𝑥 =  

𝑥

√𝑥2+1
 

 

Example 1.1.12 

Find 𝑓’(𝑥) if  𝑓(𝑥) =
1

√𝑥2+𝑥+1
3  

Solution: 

𝑓(𝑥) = (𝑥2 + 𝑥 + 1)−1/3 

𝑓 ′(𝑥) = −
1

3
(𝑥2 + 𝑥 + 1)−

4
3

𝑑

𝑑𝑥
(𝑥2 + 𝑥 + 1) 

           = −
1

3
(𝑥2 + 𝑥 + 1)−

4

3(2𝑥 + 1) 

           =
−2𝑥−1

3
(𝑥2 + 𝑥 + 1)−

4

3 

 

Example 1.1.13 

Find the derivative of a function 𝑔(𝑡) = (
𝑡−2

2𝑡+1
)

9
 

Solution: 

𝑔′(𝑡) = 9 (
𝑡 − 2

2𝑡 + 1
)

8 𝑑

𝑑𝑡
(

𝑡 − 2

2𝑡 + 1
) 

         = 9 (
𝑡 − 2

2𝑡 + 1
)

8 5

(2𝑡 + 1)2 

         =
45(𝑡 − 2)8

(2𝑡 + 1)10 
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1.1.9 HIGHER DERIVATIVES  

We take derivatives of functions. Since the derivative of a function is itself a function, we can take the derivative 

again. A higher-order derivative refers to the repeated process of taking derivatives of derivatives. Higher-order 

derivatives are applied to sketch curves, motion problems, and other applications. 

Notation for higher-order derivatives: 

    

Example 1.1.14 

Find the third derivative of 𝑓(𝑥) =
2𝜋2

6−𝑥
 

Solution: 

Instead of using the quotient rule, we can simplify the function to 

𝑓(𝑥) = 2𝜋2(6 − 𝑥)−1 

𝑓′(𝑥) = −2𝜋2(6 − 𝑥)−2(−1) =  2𝜋2(6 − 𝑥)−2 

𝑓′′(𝑥) = −4𝜋2(6 − 𝑥)−3(−1) =  4𝜋2(6 − 𝑥)−3 

𝑓′′′(𝑥) = −12𝜋2(6 − 𝑥)−4(−1) =  12𝜋2(6 − 𝑥)−4 

 

Example 1.1.15 

Find the first four derivatives 𝑅(𝑡) = 3𝑡2 + 8𝑡
1

2 +  𝑒𝑡 

Solution: 

𝑅′(𝑡) = 6𝑡 + 4𝑡−
1
2

 +  𝑒𝑡 

𝑅′′(𝑥) = 6 − 2𝑡−
3
2

 +  𝑒𝑡 

𝑅′′′(𝑥) = 3𝑡−
5
2

 +  𝑒𝑡 

𝑅(4)(𝑥) = −
15

2
𝑡−

7
2

 +  𝑒𝑡 
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Example 1.1.16 

Find 𝑓′′′(4) if 𝑓(𝑥) =  √𝑥 

Solution:  

𝑓(𝑥) =  𝑥1/2 

𝑓′(𝑥) =  
1

2
𝑥−1/2 

𝑓′′(𝑥) =  −
1

4
𝑥−3/2 

𝑓′′′(𝑥) =  
3

8
𝑥−5/2 

Hence, 𝑓′′′(4) =  
3

8
(4)−5/2 =

3

8
(

1

32
) =

3

256
  

 

1.1.10 DERIVATIVES OF INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 

The Inverse Trigonometric functions are also called as arcus functions, cyclometric functions or anti-trigonometric 

functions. These functions are used to obtain angle for a given trigonometric value. Inverse trigonometric functions 

have various application in engineering, geometry, navigation etc. 

 

Here are the derivatives of all six inverse trigonometric functions. 

 
 

Example 1.1.17 

Differentiate the function 𝑓(𝑥) = 𝑠𝑖𝑛−1(𝑥2 − 1). 

Solution: 

𝑓′(𝑥) =
1

√1−(𝑥2 − 1)2
∙

𝑑

𝑑𝑥
(𝑥2 − 1) =

1

√1 − (𝑥4 − 2𝑥2 +  1)
∙ 2𝑥 =

2𝑥

√2𝑥2 − 𝑥4
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Example 1.1.18 

Calculate the derivative of 𝑓(𝑥) =  𝑡𝑎𝑛−1 (
  𝑥2

2
) 

 

Solution:  

𝑓′(𝑥) =
1

1 + (
𝑥2

2
)

2 ∙
𝑑

𝑑𝑥
(

𝑥2

2
) =

1

1 + (
𝑥2

2
)

2 ∙
2𝑥

2
=

𝑥

1 + (
𝑥2

2
)

2 =
𝑥

1 +
𝑥4

4

 

 

 

Example 1.1.19 

Calculate the derivative of 𝑓(𝑥) = 𝑥𝑠𝑖𝑛−1(3𝑥) 

 

Solution:  
𝑑

𝑑𝑥
𝑠𝑖𝑛−1(3𝑥) =

1

√1 − (3𝑥)2
∙

𝑑

𝑑𝑥
(3𝑥) =  

3

√1 − 9𝑥2
 

  

Hence, 𝑓′(𝑥) =
𝑑

𝑑𝑥
𝑥𝑠𝑖𝑛−1(3𝑥) = 𝑥 ∙

3

√1−9𝑥2
+ (1)𝑠𝑖𝑛−1(3𝑥) =  

3𝑥

√1−9𝑥2
+ 𝑠𝑖𝑛−1(3𝑥)   

 

 

The derivatives of the hyperbolic functions are as following: 

 
 

Example 1.1.20 

Differentiate 
𝑑

𝑑𝑥
cosh (√𝑥) 

 

Solution: 

Any of the differentiation rule for the hyperbolic function can be combined with the chain rule. For instance, 

𝑑

𝑑𝑥
cosh(√𝑥) = sinh(√𝑥) ∙

𝑑

𝑑𝑥
(√𝑥) = sinh(√𝑥) ∙

1

2
𝑥−1/2 =

sinh(√𝑥)

2√𝑥
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Example 1.1.21 

If  𝑦 = 𝑒cosh 3𝑥, find y’. 

Solution: 

𝑦′ = 𝑒cosh 3𝑥
𝑑

𝑑𝑥
cosh(3𝑥) =  𝑒cosh 3𝑥 ∙ sinh(3𝑥) ∙

𝑑

𝑑𝑥
3𝑥 

     = 𝑒cosh 3𝑥 ∙ sinh(3𝑥) ∙ 3 = 3𝑒cosh 3𝑥 ∙ sinh(3𝑥)  

 

Example 1.1.22 

If 𝑦 =  𝑠𝑖𝑛ℎ (𝑐𝑜𝑠ℎ 𝑥). Find y’. 

 

Solution: 

𝑦′ = cosh(cosh 𝑥) .
𝑑

𝑑𝑥
(cosh 𝑥) =  cosh(cosh 𝑥) . sinh (𝑥) 

 

 

The inverse hyperbolic functions are all differentiable because the hyperbolic functions are differentiable. 

 

 
 

Example 1.1.23 

Find the derivative of 𝑦 = −8𝑐𝑜𝑡ℎ−1(21𝑥3) 

 

Solution: 

 

𝑦′ = −8 [
1

1 − (21𝑥3)2]
𝑑

𝑑𝑥
(21𝑥3) =

−8

1 − 441𝑥6
∙ 63𝑥2 =

−504𝑥2

1 − 441𝑥6
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1.1.11 IMPLICIT DIFFERENTIATION  

The functions that we have seen so far can be described by expressing one variable explicitly in terms of another 

variable for example y = x or y = x sin x.  

Some functions, however, are defined implicitly by a relation between x and y such as  

𝑥2 + 𝑦2= 25 or 𝑥3 + 𝑦3 = 6𝑥𝑦 

The function is not written as “y=” some expression. This type of function is called implicit function. To differentiate 

implicit functions, we differentiate each side of an equation with two variables (usually 𝑥 and 𝑦) by treating one of 

the variables as a function of the other. Such differentiation is basically just a special kind of chain rule.  

Let's differentiate 𝑥2 + 𝑦2 = 1 for example. Here, we treat 𝑦 as an implicit function of 𝑥. 

𝑥2 + 𝑦2 = 1 

𝑑

𝑑𝑥
(𝑥2 + 𝑦2) =

𝑑

𝑑𝑥
(1) 

𝑑

𝑑𝑥
(𝑥2) +

𝑑

𝑑𝑥
(𝑦2) = 0 

2𝑥 + 2𝑦 ∙
𝑑𝑦

𝑑𝑥
= 0 

𝑑𝑦

𝑑𝑥
=  −

𝑥

𝑦
 

Notice that the derivative of 𝑦2 is 2𝑦 ∙
𝑑𝑦

𝑑𝑥
 and not simply 2𝑦. This is because we treat 𝑦 as a function of 𝑥. 

 

Example 1.1.24 

Find y’ if 𝑥3 + 𝑦3 = 6𝑥𝑦, then find the tangent line to the curve at the point (3,3). 

Solution:  

Find y’ 

𝑑

𝑑𝑥
𝑥3 +

𝑑

𝑑𝑥
𝑦3 =

𝑑

𝑑𝑥
6𝑥𝑦 

3𝑥2 + 3𝑦2𝑦 ′ = 6𝑥. 1. 𝑦 ′ + 6. 𝑦     

𝑥2 + 𝑦2𝑦 ′ = 2𝑥𝑦 ′ + 2𝑦 

𝑦2𝑦 ′ − 2𝑥𝑦 ′ = 2𝑦 − 𝑥2 

(𝑦2 − 2𝑥)𝑦 ′ = 2𝑦 − 𝑥2 

𝑦 ′ =
2𝑦 − 𝑥2

𝑦2 − 2𝑥
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Find the tangent line to the curve at the point (3,3) 

𝑦 ′ =
2𝑦−𝑥2

𝑦2−2𝑥
=

2(3)−(3)2

32−2(3)
=  −

3

3
=  −1  (slope) 

𝑦 = 𝑚𝑥 + 𝑐 

3 =  −1(3) + 𝑐 

𝑐 = 6 

Hence, the tangent line is  y=  −𝑥 + 6 

 

Example 1.1.25 

Find 𝑦’ if 𝑠𝑖𝑛(𝑥 + 𝑦)  =  𝑦2 𝑐𝑜𝑠 𝑥 

Solution: 

𝑑

𝑑𝑥
𝑠𝑖𝑛(𝑥 + 𝑦) =

𝑑

𝑑𝑥
𝑦2 𝑐𝑜𝑠 𝑥 

𝑐𝑜𝑠(𝑥 + 𝑦).
𝑑

𝑑𝑥
(𝑥 + 𝑦) = (2𝑦. 𝑦′)𝑐𝑜𝑠𝑥 + 𝑦2

𝑑

𝑑𝑥
𝑐𝑜𝑠 𝑥 

𝑐𝑜𝑠(𝑥 + 𝑦). (1 + 𝑦′) =  2𝑦𝑦′𝑐𝑜𝑠𝑥 + 𝑦2 (−𝑠𝑖𝑛 𝑥) 

𝑐𝑜𝑠(𝑥 + 𝑦) + 𝑐𝑜𝑠(𝑥 + 𝑦)𝑦′ =  2𝑦𝑦′𝑐𝑜𝑠𝑥 − 𝑦2 sin 𝑥 

𝑐𝑜𝑠(𝑥 + 𝑦)𝑦′ − 2𝑦. 𝑦′𝑐𝑜𝑠𝑥 =  −𝑦2 sin 𝑥 − 𝑐𝑜𝑠(𝑥 + 𝑦) 

(𝑐𝑜𝑠(𝑥 + 𝑦)−2𝑦𝑐𝑜𝑠𝑥)𝑦′ =  −𝑦2 sin 𝑥 − 𝑐𝑜𝑠(𝑥 + 𝑦) 

𝑦′ =
−𝑦2 sin 𝑥 − 𝑐𝑜𝑠(𝑥 + 𝑦)

𝑐𝑜𝑠(𝑥 + 𝑦) − 2𝑦𝑐𝑜𝑠𝑥
 

Example 1.1.26 

Find y’’ if 𝑥4 +  𝑦4 = 16 

Solution:  

 
𝑑

𝑑𝑥
 (𝑥4 + 𝑦4) = 

𝑑

𝑑𝑥
 (16) 

4𝑥3 + 4𝑦3.y’ = 0 

                 y’ = 
−4𝑥3

4𝑦3  =  
−𝑥3

𝑦3  

                 y’’ = 
−3𝑥2𝑦3+3𝑦2𝑥3𝑦′

𝑦6  

                 y’’ = 
−3𝑥2(𝑦4+𝑥4)

𝑦7  
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Example 1.1.27 

Use implicit differentiation to find an equation of the tangent line to the curve at point (1,1). 

            𝑥2 + 𝑥𝑦 + 𝑦2 = 3 

Solution: 

Use implicit differentiation,    2𝑥 +  𝑥𝑦’ +  𝑦 +  2𝑦. 𝑦’ =  0 

                                                                                                𝑦′ =
−𝑦−2𝑥

𝑥+2𝑦
 

Substitute (1,1) into 𝑦′,   𝑦′ =
−1−2(1)

1+2(1)
= −1 

Substitute into line equation: 

             𝑦 = 𝑚𝑥 + 𝑐 

             1 = −1(1) + 𝑐  

  𝑐 = 2 

Hence, tangent line is 𝑦 =  −𝑥 + 2 

 

Example 1.1.28 

If 𝑥𝑦 + 𝑦3 = 1, find value of 𝑦’’ at the point where 𝑥 = 0. 

Solution : 

𝑥𝑦′ + 𝑦 + 3𝑦2𝑦′ = 1 

(𝑥 + 3𝑦2)𝑦′ = −𝑦 

𝑦′ = −
𝑦

𝑥 + 3𝑦2
 

𝑦′′ =
−𝑦′(𝑥 + 3𝑦2) − (1 + 6𝑦𝑦′)(−𝑦)

(𝑥 + 3𝑦2)2
=

−𝑦′(𝑥 + 3𝑦2) + 𝑦(1 + 6𝑦𝑦′)

(𝑥 + 3𝑦2)2
  

At 𝑥 =  0, 𝑥𝑦 + 𝑦3 = 1 → (0)𝑦 + 𝑦3 = 1 → 𝑦 = 1  

                     𝑦′ = −
𝑦

𝑥+3𝑦2  → 𝑦′ = −
1

0+3(1)2 =  −
1

3
 

                    𝑦′′ =
−(−

1

3
)(0+3(1)2)+1(1+6(1)(−

1

3
))

(0+3(1)2)2 = 0  
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Example 1.1.29 

Assume that y is a function of x.  Find y’ = dy/dx for  𝑒𝑥𝑦 =  𝑒4𝑥 − 𝑒5𝑦 

Solution: 

𝐷(𝑒𝑥𝑦) =  𝐷(𝑒4𝑥 − 𝑒5𝑦) 

𝐷(𝑒𝑥𝑦) =  𝐷(𝑒4𝑥) − 𝐷(𝑒5𝑦) 

𝑒𝑥𝑦𝐷(𝑥𝑦) =  𝑒4𝑥𝐷(4𝑥) − 𝑒5𝑦𝐷(5𝑦) 

𝑒𝑥𝑦(𝑥. 𝑦′ + (1)𝑦) =  𝑒4𝑥(4) − 𝑒5𝑦(5𝑦′) 

𝑥𝑒𝑥𝑦𝑦′ + 𝑦𝑒𝑥𝑦 =  4𝑒4𝑥 − 5𝑦′𝑒5𝑦 

𝑥𝑒𝑥𝑦𝑦′ + 5𝑦′𝑒5𝑦 =  4𝑒4𝑥 − 𝑦𝑒𝑥𝑦 

(𝑥𝑒𝑥𝑦 + 5𝑒5𝑦)𝑦′ =  4𝑒4𝑥 − 𝑦𝑒𝑥𝑦 

𝑦′ =  
4𝑒4𝑥 − 𝑦𝑒𝑥𝑦

𝑥𝑒𝑥𝑦 + 5𝑒5𝑦
 

 

1.1.12 PARAMETRIC DIFFERENTIATION  

Some relationships between two quantities or variables are so complicated that we sometimes introduce a third 

quantity or variable in order to make things easier to handle. In mathematics this third quantity is called a parameter. 

Instead of one equation relating say, 𝑥 and 𝑦, we have two equations, one relating 𝑥 with the parameter, and one 

relating 𝑦 with the parameter.  

For example, the x and y coordinates of points on a curve can be defined in terms of a third variable, t, the parameter 

as follows:  

𝑥 = cos (𝑡)      and    𝑦 =  sin (𝑡)          for 0 ≤ t ≤ 2π 

Note how both x and y are given in terms of the third variable t. 

It is often necessary to find the rate of change of a function (i.e. the curve) defined parametrically; that is, we want 

to calculate dy/dx . Let’s look at one example how this is achieved.  

Suppose we wish to find 
𝑑𝑦

𝑑𝑥
  when 𝑥 =  𝑐𝑜𝑠𝑡  and 𝑦 =  𝑠𝑖𝑛 𝑡 . We differentiate both 𝑥  and 𝑦  with respect to the 

parameter, 𝑡:  

𝑑𝑥

𝑑𝑡
 =  − 𝑠𝑖𝑛 𝑡                  

𝑑𝑦

𝑑𝑡
 =  𝑐𝑜𝑠𝑡  

From the chain rule, we know that  

𝑑𝑦

𝑑𝑡
 =

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡
 

so that, by rearrangement  
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𝑑𝑦

𝑑𝑥
 =

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

  provided 
𝑑𝑥

𝑑𝑡
  is not equal to 0 

So, in this case 

𝑑𝑦

𝑑𝑥
 =

𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

=
cos 𝑡

−sin 𝑡
=  − cot 𝑡 

                        

                        

 

Example 1.1.30 

Find 𝑑𝑦/𝑑𝑥 when 𝑥 = 𝑡3 − 𝑡 and 𝑦 = 4 − 𝑡2 

Solution:  

𝑥 = 𝑡3 − 𝑡           𝑦 = 4 − 𝑡2 

𝑑𝑥

𝑑𝑡
=  3𝑡2 − 1      

𝑑𝑦

𝑑𝑥
= −2𝑡 

From the chain rule we have 

𝑑𝑦

𝑑𝑥
 =

𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

 

        =
−2𝑡

3𝑡2 − 1
  

 

Example 1.1.31 

Find 
𝑑2𝑦

𝑑𝑥2 when 𝑥 = 𝑡3 + 3𝑡2  and 𝑦 = 𝑡4 − 8𝑡2 

Solution: 

dx

dt
=  3t2 + 6t     

dy

dt
= 4t3 − 16t  
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Using the chain rule 

𝑑𝑦

𝑑𝑥
 =

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

  provided 
𝑑𝑥

𝑑𝑡
 ≠ 0 

So that 
𝑑𝑦

𝑑𝑥
 =

4t3−16t

3t2+6t
=  

4t(t2−4)

3t(t+2)
=

4t(t+2)(t−2)

3t(t+2)
=

4(t−2)

3
 

 

We can apply the chain rule a second time in order to find the second derivative, 
𝑑2𝑦

𝑑𝑥2 

𝑑2𝑦

𝑑𝑥2
=

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) =

𝑑
𝑑𝑡

(
𝑑𝑦
𝑑𝑥

)

𝑑𝑥
𝑑𝑡

=

4
3

3𝑡2 + 6𝑡
=

4

9𝑡(𝑡 + 2)
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1.2 Engineering Applications of Functions and 

Derivatives 
1.2.1 APPROXIMATING FUNCTIONS  

 

We call the linear function 

                                                                  𝐿(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎)                                           (4)   

the linear approximation, or tangent line approximation, of 𝑓 at 𝑥 = 𝑎. This function L is also known as the 

linearization of 𝑓 at 𝑥 = 𝑎. To show how useful the linear approximation can be, we look at how to find 

the linear approximation for at .  

 

Example 1.2.1: Linear Approximation  

Find the linear approximation of 𝑓(𝑥) =  √𝑥 at 𝑥 = 9 and use the approximation to estimate √9.1 .  

Solution 

Since we are looking for the linear approximation at , using Equation (4), we know the linear 

approximation is given by  

𝐿(𝑥) = 𝑓(9) + 𝑓′(9)(𝑥 − 9) 

We need to find 𝑓(9) and 𝑓′(9) 

𝑓(𝑥) = √𝑥 = 𝑓(9) = √9 = 3 

𝑓′(𝑥) =
1

2√𝑥
= 𝑓′(9) =

1

2√9
=

1

6
 

Therefore, the linear approximation is given by, 

𝐿(𝑥) = 3 +
1

6
(𝑥 − 9) 

Using the linear approximation, we can estimate √9.1 by writing 

√9.1 = 𝑓(9.1) ≈ 𝐿(9.1) = 3 +
1

6
(9.1 − 9) ≈ 3.0167. 
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Exercise 1.2.1 

Find the linear approximation of 𝑓(𝑥) =  √𝑥
3

 at 𝑥 = 8. Use it to approximate √8.1
3

 to five decimal places. 

Answer 

𝐿(𝑥) = 2 +
1

12
(𝑥 − 8); 2.00833 

 

Differentials 

 

We have seen that linear approximations can be used to estimate function values. They can also be used 

to estimate the amount a function value changes as a result of a small change in the input. To discuss this 

more formally, we define a related concept: differentials. Differentials provide us with a way of estimating 

the amount a function changes as a result of a small change in input values. 

When we first looked at derivatives, we used the Leibniz notation 𝑑𝑦/𝑑𝑥 to represent the derivative of 

𝑦 with respect to 𝑥. Although we used the expressions 𝑑𝑦 and 𝑑𝑥 in this notation, they did not have 

meaning on their own. Here we see a meaning to the expressions 𝑑𝑦 and 𝑑𝑥. Suppose 𝑦 = 𝑓(𝑥) is a 

differentiable function. Let 𝑑𝑥 be an independent variable that can be assigned any nonzero real number, 

and define the dependent variable 𝑑𝑦 by 

 𝑑𝑦 = 𝑓′(𝑥)𝑑𝑥.                                  (5) 

It is important to notice that 𝑑𝑦 is a function of both 𝑥 and 𝑑𝑥. The expressions 𝑑𝑦 and 𝑑𝑥 are called 

differentials. We can divide both sides of Equation (5) by 𝑑𝑥, which yields 

                                                                    
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥)                           (6) 

This is the familiar expression we have used to denote a derivative. Equation (6) is known as the 

differential form of Equation (5). 

 

Example 1.2.2: Computing Differentials 

For each of the following functions, find 𝑑𝑦 and evaluate when 𝑥 = 3 and 𝑑𝑥 = 0.1. 

a. 𝑦 =  𝑥2 + 2𝑥,  
b. 𝑦 = 𝑐𝑜𝑠𝑥 

 

Solution 

The key step is calculating the derivative. When we have that, we can obtain 𝑑𝑦 directly. 
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a. Since 𝑓(𝑥) = 𝑥2 + 2𝑥, we know 𝑓′(𝑥) = 2𝑥 + 2, and therefore 
𝑑𝑦 = (2𝑥 + 2)𝑑𝑥. 

When 𝑥 = 3 and 𝑑𝑥 = 0.1,  

d𝑦 = (2 ∗ 3 + 2)(0.1) = 0.8. 

b. Since 𝑓(𝑥) = 𝑐𝑜𝑠𝑥, 𝑓′(𝑥) = −sin (𝑥). This gives us 
𝑑𝑦 = −𝑠𝑖𝑛𝑥 𝑑𝑥. 

When 𝑥 = 3 and 𝑑𝑥 = 0.1 

𝑑𝑦 = − sin(3) (0.1) = −0.1 sin(3). 

 

Example 1.2.3: Approximating Change with Differentials 

Let 𝑦 =  𝑥2 + 2𝑥. Compute ∆𝑦 and 𝑑𝑦 at 𝑥 = 3 if 𝑑𝑥 = 0.1. 

 

Solution 

The actual change in 𝑦 if 𝑥 changes from 𝑥 = 3 to 𝑥 = 3.1is given by 

∆𝑦 = 𝑓(3.1) − 𝑓(3) = [(3.1)2 + 2(3.1)] − [32 + 2(3)] = 0.81 

 

The approximate change in 𝑦 is given by 𝑑𝑦 = 𝑓′(3)𝑑𝑥. Since 𝑓′(𝑥) = 2𝑥 + 2, we have 

𝑑𝑦 = 𝑓′(3)𝑑𝑥 = (2(3) + 2)(0.1) = 0.8 

 

Exercise 1.2.2 

For 𝑦 =  𝑥2 + 2𝑥, find ∆𝑦 and 𝑑𝑦 at 𝑥 = 3 if 𝑑𝑥 = 0.2. 

Answer : 

𝑑𝑦 = 1.6, ∆𝑦 = 1.64  

 

Calculating the Amount of Error 

Any type of measurement is prone to a certain amount of error. In many applications, certain quantities are 
calculated based on measurements. For example, the area of a circle is calculated by measuring the radius 
of the circle. An error in the measurement of the radius leads to an error in the computed value of the area. 
Here we examine this type of error and study how differentials can be used to estimate the error. 
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Consider a function 𝑓 with an input that is a measured quantity. Suppose the exact value of the measured 

quantity is 𝑎 but the measured value is 𝑎 + 𝑑𝑥. We say the measurement error is 𝑑𝑥 (𝑜𝑟 ∆𝑥). As a result, 

an error occurs in the calculated quantity 𝑓(𝑥). This type of error is known as a propagated error and is 

given by 

 ∆𝑦 = 𝑓(𝑎 + 𝑑𝑥) − 𝑓(𝑎)                                                                   (7) 

Since all measurements are prone to some degree of error, we do not know the exact value of a measured 

quantity, so we cannot calculate the propagated error exactly. However, given an estimate of the accuracy 

of a measurement, we can use differentials to approximate the propagated error ∆𝑦. Specifically, if 𝑓 is a 

differentiable function at 𝑎,the propagated error is 

                                                                      ∆𝑦 ≈ 𝑑𝑦 = 𝑓′(𝑎)𝑑𝑥                                                   (8) 

Unfortunately, we do not know the exact value 𝑎. However, we can use the measured value 𝑎 + 𝑑𝑥, and 

estimate 

 ∆𝑦 ≈ 𝑑𝑦 = 𝑓′(𝑎 + 𝑑𝑥)𝑑𝑥                                                            (9) 

 

Example 1.2.4: Volume of Cube 

Suppose the side length of a cube is measured to be 5cm with an accuracy of 0.1 cm. 

a. Use differentials to estimate the error in the computed volume of the cube. 
b. Compute the volume of the cube if the side length is (i) 4.9cm and (ii) 5.1 cm to compare the 

estimated error with the actual potential error. 
 

Solution 

a. The measurement of the side length is accurate to within ±0.1 cm. Therefore  
−0.1 ≤ 𝑑𝑥 ≤ 0.1. 

              The volume of a cube is given by 𝑉 = 𝑥3, which leads to  

𝑑𝑉 = 3𝑥2𝑑𝑥. 

              Using the measured side length of 5cm, we can estimate that  

−3(5)2(0.1) ≤ 𝑑𝑉 ≤ 3(5)2(0.1) 

               Therefore, 

−7.5 ≤ 𝑑𝑉 ≤ 7.5 

 

b. If the side length is actually 4.9 cm, then the volume of the cube is 
𝑉(4.9) = (4.9)3 = 117.649𝑐𝑚3. 
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               If the side length is actually 5.1 cm, then the volume of the cube is  

𝑉(5.1) = (5.1)3 = 132.651𝑐𝑚3. 

 

There the actual volume of the cube is between 117.649 and 132.651. Since the side length is 

measured to be 5cm, the computed volume is 𝑉(5) = (5)3 = 125. Therefore, the error in the 

computed volume is 

117.649 − 125 ≤ 𝑑𝑉 ≤ 132.651 − 125 

That is, 

−7.351 ≤ 𝑑𝑉 ≤ 7.651 

We see the estimated error 𝑑𝑉 is relatively close to the actual potential error in the computed volume.  

 

1.2.2 THE GRADIENT OF A STRAIGHT LINE   

 

To see how the derivative of f can tell us where a function is increasing or decreasing, look at figure below. 

Between A and B and between C and D, the tangent lines have positive slope and so f  (x) > 0. 

Between B and C the tangent lines have negative slope and so f (x) < 0. Thus, it appears that f 

increases when f  (x) is positive and decreases when f  (x) is negative. 

To prove that this is always the case, we use the Mean Value Theorem. 
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The First Derivative Test is a consequence of the Increase/Decrease Test. In part (a), for instance, since 

the sign of f (x) changes from positive to negative at c, f is increasing to the left of c and decreasing to 
the right of c. 

It follows that f has a local maximum at c.  It is easy to remember the First Derivative Test by 

visualizing diagrams such as those in figures below. 

 

 

(a) Local maximum (b) Local minimum 

 
 

 
 

(c) No maximum or minimum                    (d) No maximum or minimum 
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1.2.3  CONCAVITY  

 

Figure below shows the graph of a function that is concave upward (CU) on intervals (b, c), (d, e), and (e, 

p) and concave downward (CD) on intervals (a, b), (c, d) and (p, q). 

 

 

 

This reasoning can be reversed and suggests that the following theorem is true. 
 

 

 

Example 1.2.5 
 

Find local maximum and minimum values for function 
 

f (x) = 3x4 – 4x3 – 12x2 + 5 

 
Find critical numbers 

 

f’(x) = 12 - x-2) = 12 x (x-2) (x+1) 
 

Critical numbers: f’(x) = 0, x =-1, 0, 2 
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Hence, 
    Local minimum at x= -1, f(-1) =  0 
    Local maximum at x=0, f(0) = 5  
    Local minimum at x=2, f(2) = -27 
 

If use 2nd derivative test 

f’’(x) = 36 - 24x – 24 
 

(x = -1) → f’’(x) = +ve 
 

(x = 0) → f’’(x) = -ve 

 
(x = 2) → f’’(x) = +ve 

 
 

Example 1.2.6 
 

Discuss the curve y = x4 – 4x3 with respect to concavity, and local maxima and minima. 
 

Solution  

 
f (x) = x4 – 4x3, 

 

then  

f (x) = 4x3 – 12x2 = 4x2(x – 3) 

f  (x) = 12x2 – 24x    = 12x(x – 2) 
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To find the critical numbers we set f’(x)=0 and obtain x=0 and x=3. 
 
To use the Second Derivative Test 
 

f (0) = 0 f (3) = 36 > 0 

Since f (3) = 0 and f (3) > 0, f (3) = –27 is a local minimum. Since f (0) = 0, the Second Derivative 

Test gives no information about the critical number 0. 

 

But since f (x) < 0 for x < 0 and also for 0 < x < 3, the First Derivative Test tells us that f does not have a 

local maximum or minimum at 0. 

 

[In fact, the expression for f (x) shows that f decreases to the left of 3 and increases to the right of 3. 
 

1.2.4 THE SECOND DERIVATIVES  

 

Example 1.2.9 
 
A manufacturer needs to make a cylindrical container that will hold 1.5 liters of liquid. Determine the 
dimensions (in cm) of the container that will minimize the amount of material used in its construction with 
a proof. 
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The next step to create a corresponding mathematical model: 

Minimize: 𝐴 = 2𝜋𝑟2 + 2𝜋𝑟ℎ 

Constraint:      𝜋𝑟2ℎ = 1500 

i. Volume = 𝑉 = 1500 
          ℎ =? 

 

ii. Find Area, 𝐴 (𝑟) in terms of 𝑟 by substituting ℎ. 
iii. Find 𝐴′(𝑟) =? 
iv. Find critical numbers when 𝐴′(𝑟) = 0. 
v. Prove critical number ➔ minimum point 
vi. Dimension ➔ radius and height 

 

Solution: 

i. Volume, 𝑉 = 𝜋𝑟2ℎ = 1500 

h= 
1500

𝜋𝑟2  

 

ii. Find Area 𝐴(𝑟) in terms of 𝑟 by substituting ℎ. 
 

𝐴(𝑟) = 2𝜋𝑟2 + 2𝜋𝑟
1500

𝜋𝑟2
=  2𝜋𝑟2 +

3000

𝑟
 

 

iii. Find 𝐴′(𝑟) =? 
 

𝐴′(𝑟) = 4𝜋𝑟 − 3000𝑟−2 =
4𝜋𝑟3 − 3000

𝑟2
 

 

iv. Find critical numbers when 𝐴′(𝑟) = 0. 
4𝜋𝑟3 − 3000

𝑟2
= 0 

𝑟 =  √
3000

4𝜋

3

=  √238.7
3

 

v. Prove dimensions ➔ will give minimum value 
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Using first derivative test  

 

 

Example 1.2.10 

A window is being built. The bottom is a rectangle while the top is a semicircle. If there is 12m 

of framing material, what must the dimensions of the window be in order to let in most light? 

Provide justification for resulted dimensions. 

 

i. Find area and constraint. 
ii. Find Area, 𝐴 (𝑟) in terms of 𝑟 by substituting ℎ. 
iii. Find 𝐴′(𝑟) =? 
iv. Find critical numbers when 𝐴′(𝑟) = 0. 
v. Prove critical number ➔ max point 
vi. Dimension ➔ radius and height 
 

Solution: 

i. Find area and constraint. 
 

             𝐴 = 2𝑟ℎ +
1

2
𝜋𝑟2 

             Length=  2ℎ + 2𝑟 + 𝜋𝑟 = 12 

ii. Find Area, 𝐴 (𝑟) in terms of 𝑟 by substituting ℎ. 
          

             ℎ =
12−2𝑟−𝜋𝑟

2
= 6 − 𝑟 −

𝜋𝑟

2
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           𝐴(𝑟) = 12𝑟 − 𝑟2(2 +
1

2
𝜋) 

 

iii. Find 𝐴′(𝑟) =? 
 

𝐴′(𝑟) = 12 − 𝑟(4 + 𝜋) 

 

iv. Find critical numbers when 𝐴′(𝑟) = 0. 
  

12 − 𝑟(4 + 𝜋) = 0 

 𝑟 =
12

4+𝜋
 

 

v. Prove critical number ➔ max point 
 

Use either first or second derivative test 

𝐴′(𝑟) = 12 − 𝑟(4 + 𝜋) 

𝐴′′(𝑟) = −(4 + 𝜋) ➔ negative 

 

vi. Dimension of the window 
 

Width (2𝑟) =
24

4+𝜋
= 3.36 𝑚 

Height (ℎ)  = 6 − 𝑟 −
𝜋𝑟

2
= 1.68 𝑚 

Curve= 
12𝜋

4+𝜋
 

 

 

 

 


