
31 
 

WEEK 11: MULTIPLE INTEGRALS IN POLAR COORDINATE & ITS ENGINEERING 

APPLICATION 

11.1  CARTESIAN COORDINATES TO POLAR COORDINATES  

We consider the borders of the region R in terms of x and y and integrate by that. It is how we learned 

to deal with integrating multivariate functions over a variety of different types of regions in the XY-

plane. There will be times when it is far more practical to think about the region R in polar rather than 

Cartesian coordinates. Consider what would occur, for instance, if we tried to integrate the function f 

(x, y) across the region R below in Cartesian coordinates: 

 

 

Figure 11.1 

 

It would be challenging to set up the integral in Cartesian coordinates because the region's bounds 

are neither stated in terms of functions of x nor of y. Instead, we would need to divide the region into 

smaller sections and build an integral for each. The issue, however, would be made simpler by writing 

up the integral in terms of polar coordinates. Substantially, we will discover how to evaluate specific 

integrals using polar coordinates in this part. 

 

Let's review some fundamentals of polar coordinates before delving into the method's specifics. 

 

The Cartesian coordinates (x, y), where x and y are measured along the respective axes, can describe 

any point on the plane. Points on the plane can also be thought of in terms of the polar coordinates r 

and θ, so this is not the only way to represent them. 

 

Fixing a point O, the origin, and an initial ray will let us construct the polar coordinate system (which 

generally corresponds to the positive part of the x-axis). Using the directed angle θ from the original 

ray to the segment OP and the directed distance r from the origin, we can characterize a point P in the 

plane as follows: 
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Figure 11.2 

If we wish to convert a point’s polar coordinates to Cartesian coordinates, or vice-versa, we can use a 

basic trigonometry to help us out. Recall that, if (x, y) is the Cartesian coordinate of a point with angle 

θ from the initial ray, and if 𝒙𝟐 +  𝒚𝟐 = 𝒓𝟐, then sin θ = 
𝒚

𝒓
 and cos θ = 

𝒙

𝒓
: 

 

So, if P has polar coordinates (r, θ), then we can rewrite the coordinates using the conversions x = r 

cos θ and y = r sin θ. Alternatively, if we have Cartesian coordinates (x, y), then we can determine r 

and θ using the formulas 𝒙𝟐 + 𝒚𝟐 = 𝒓𝟐, and tan θ =
𝒚

𝒙
. Summary of cartesian coordinates to polar 

coordinates: 

 

Cartesian coordinates Polar coordinates 

𝒙 r cos θ 

𝒚 r sin θ 

f (x, y) f (r cos θ, r sin θ) 

 

11.2  DOUBLE INTEGRAL IN POLAR COORDINATE & ITS APPLICATION 

If we convert rectangular coordinates to polar coordinates, it can often be considerably simpler to 

evaluate double integrals. But first, we need to define the idea of a double integral in a polar 

rectangular region before we explain how to execute this change. 

When we defined the double integral for a continuous function in rectangular coordinates—say, g 

over a region R in the XY-plane—we divided R into sub-rectangles with sides parallel to the coordinate 

axes. These sides have either constant x -values and/or constant y -values.  

In polar coordinates, the shape we work with is a polar rectangle, whose sides have constant r -values 

and/or constant θ -values. This means we can describe a polar rectangle as in Figure 11.4, with R= 

{(r, θ) a ≤ r ≤ b, α ≤ θ ≤ β}. 
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Figure 11.4 (a) A polar rectangle R (b) divided into sub rectangles Rij (c) Close-up of a sub-rectangle 

Consider a function f (r, θ) over a polar rectangle R. We divide the interval [a,b]  into  m  subintervals  

[ri−1,ri]  of length  Δr =(b−a)/m  and divide the interval  [α,β]  into  n  subintervals  [θi−1,θi]  of width  

Δθ =(β−α)/n . This means that the circles r=ri and rays θ=θi for 1≤i≤m and 1≤j≤n divide the polar 

rectangle R into smaller polar sub-rectangles Rij (Figure 11.4b). 

As previously, we must determine the "polar" volume of the thin box above Rij and the area, dA, of 

the polar sub-rectangle Rij. Remember that in a circle with radius r, the length s of an arc under the 

influence of a central angle of θ radians is equal to s=rθ. As you can see, the polar rectangle Rij 

resembles a trapezoid with parallel sides ri−1Δθ and riΔθ and a width of Δr. Therefore, the polar sub 

rectangle Rij's area is: 

 

∆𝐴 = 12∆𝑟(𝑟𝑖−1∆𝜃 + 𝑟𝑖∆𝜃) 

Simplifying and letting:  

𝑟𝑖𝑗
∗ = 12(𝑟𝑖−𝑗 + 𝑟𝑖) 

we have  ∆𝐴 = 𝑟𝑖𝑗
∗ ∆𝑟∆𝜃 

 

Hence, the thin box above Rij's polar volume (Figure 11.5) is 

 

𝑓(𝑟𝑖𝑗
∗ 𝜃𝑖𝑗

∗ )𝑟𝑖𝑗
∗ ∆𝑟∆𝜃 
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Figure 11.5 Volume of the thin box above polar rectangle, Rij 

 

We obtain a double Riemann sum by applying the same approach to all the sub rectangles and 
summing the volumes of the rectangular boxes. 

 

∑ ∑ 𝑓(𝑟𝑖𝑗
∗ , 𝜃𝑖𝑗

∗ )𝑟𝑖𝑗
∗ ∆𝑟∆𝜃

𝑛

𝑗=1

𝑚

𝑖=1

 

As we have previously seen, as we allow m and n to grow greater, we get a better approximation to 
the polar volume of the solid above the region R. Consequently, we define the polar volume as the 
double Riemann sum's limit. 

 

𝑉 =  lim
𝑚,𝑛→∞

∑ ∑ 𝑓(𝑟𝑖𝑗
∗ , 𝜃𝑖𝑗

∗ )𝑟𝑖𝑗
∗ ∆𝑟∆𝜃

𝑛

𝑗=1

𝑚

𝑖=1

 

 

This becomes the equation for the double integral. 

 

The following is the definition of the double integral of the function f(r, θ) over the polar rectangular 
region R in the r- 𝜃 plane: 

 

 

 

∬ 𝑅  𝑓(𝑟, 𝜃) 𝑑𝐴 =  lim
𝑚,𝑛→∞

∑ ∑ 𝑓(𝑟𝑖𝑗
∗ , 𝜃𝑖𝑗

∗
)𝑟𝑖𝑗

∗ ∆𝐴

𝑛

𝑗=1

𝑚

𝑖=1

 

lim
𝑚,𝑛→∞

∑ ∑ 𝑓(𝑟𝑖𝑗
∗ , 𝜃𝑖𝑗

∗ )𝑟𝑖𝑗
∗ ∆𝑟∆𝜃

𝑛

𝑗=1

𝑚

𝑖=1
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The double integral over a polar rectangular region can be stated as an iterated integral in polar 
coordinates, like the section on double integrals over rectangular regions. Hence, 

 

∬ 𝑅  𝑓(𝑟, 𝜃) 𝑑𝐴 =  ∬ 𝑅  𝑓(𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃 =  ∫ ∫ 𝑓(𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃
𝑟=𝑏

𝑟=𝑎

𝜃=𝛽

𝜃=∝
 

 

Observe that when using polar coordinates, the expression for dA is changed to rdrd𝜃. The polar 

double integral can also be viewed by substituting the double integral in rectangular coordinates. 
When the function f is expressed in terms of x and y, x=rcos, y=rsin, and dA=r drd𝜃, it becomes 

 

∬ 𝑅  𝑓(𝑟, 𝜃) 𝑑𝐴 =  ∬ 𝑅  𝑓(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃) 𝑟𝑑𝑟𝑑𝜃 

 

11.2.1 Double Integral in Polar Coordinate & Its Application  

 

Example 11.1 

 ∬ 𝑹  𝒙𝒚 𝒅𝑨 over the region Q, bound by 𝒙
𝟐 + 𝒚𝟐 = 𝟒, 𝒙 = 𝒚 and 𝒙 = 𝟎 

 

Steps: 

 

1. Always draw the region first, 𝑥
2 + 𝑦2 = 4 is equation for circle, 

𝑥2 + 𝑦2 = 4 
𝑥2 + 𝑦2 = 𝑟2

 

Hence, r = 2 

 

2.  x= y and x = 0. 

 

 

3. Set up the integral 

 

x=y 

x=0 
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∫ ∫ 𝑥𝑦 

𝑟=2

𝑟=0

𝑑𝐴

𝜃=
𝜋
2

𝜃=
𝜋
4

=  ∫ ∫ 𝑟𝑐𝑜𝑠𝜃𝑟𝑠𝑖𝑛𝜃 𝑟𝑑𝑟𝑑𝜃

𝑟=2

𝑟=0

𝜃=
𝜋
2

𝜃=
𝜋
4

 

4. Solve the double integral  

∫ ∫ 𝑟3 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑑𝑟𝑑𝜃

𝑟=2

𝑟=0

𝜃=
𝜋
2

𝜃=
𝜋
4

=  ∫ ∫
𝑟3𝑠𝑖𝑛2𝜃

2

𝑟=2

𝑟=0

𝜃=
𝜋
2

𝜃=
𝜋
4

𝑑𝑟𝑑𝜃 

 

 

∫
𝑟4

4

𝑠𝑖𝑛2𝜃

2
 
𝑟 = 2

𝑟 = 0

𝜃=
𝜋
2

𝜃=
𝜋
4

 𝑑𝜃 =
1

4
∫ 16

𝑠𝑖𝑛2𝜃

2
  𝑑𝜃

𝜃=
𝜋
2

𝜃=
𝜋
4

= ∫ 2𝑠𝑖𝑛2𝜃  𝑑𝜃

𝜃=
𝜋
2

𝜃=
𝜋
4

= (−
𝑐𝑜𝑠2𝜃

2
)

𝜃 =
𝜋
2

𝜃 =
𝜋
4

= 1 

 

 

Example 11.2 

 

 Evaluate ∬ 𝑹 (3x + 4y2) dA, where R is the region in the upper half-plane bounded by the circles 

x2 + y2 = 1 and x2 + y2 = 4. 
 

1. Draw the region: It is the half-ring and in polar coordinates it is given by 1  r  2, 0   
 . 

 

2. Set up the integral 

 

∫ ∫ (3𝑥 + 4𝑦2)𝑑𝐴 =  

𝑟=2

𝑟=1

𝜃=𝜋

𝜃=0

∫ ∫ (3𝑟𝑐𝑜𝑠𝜃 + 4(𝑟𝑠𝑖𝑛𝜃)2)𝑟𝑑𝑟𝑑𝜃  

𝑟=2

𝑟=1

𝜃=𝜋

𝜃=0

 

 

 

3. Solve the double integral 

∫ ∫ (3𝑟2𝑐𝑜𝑠𝜃 + 4𝑟3𝑠𝑖𝑛2𝜃) 𝑑𝑟𝑑𝜃  

𝑟=2

𝑟=1

=
15𝜋

2

𝜃=𝜋

𝜃=0
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11.2.2 Evaluating a Double Integral Over a General Polar Region  

In this part, we consider two types of regions, which are comparable to Type I and Type II as stated 

for rectangular coordinates in section on Double Integrals over General Regions, to calculate the 

double integral of a continuous function by iterated integrals over general polar regions. We define a 

general polar region as r=f(θ) than θ=f(r), so we describe a general polar region as R= {(r, θ) α ≤ θ ≤β, 

h1(θ) ≤ r ≤h2(θ)} 

 

 

Figure 11.6 A general polar region between α ≤ θ ≤β, h1(θ) ≤ r ≤h2(θ)} 

 

If f(r, θ)  is continuous on a general polar region  D  as described above, then 

∫ ∫ 𝑓(𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃
𝑟=ℎ2(𝜃)

𝑟=ℎ1(𝜃)

𝜃=𝛽

𝜃=∝
 

 

 

Example 11.3 

 

 ∬ 𝑹  𝒚 𝒅𝑨 over the region Q, bound by 𝒙
𝟐 + 𝒚𝟐 = 𝟐𝒙 and 𝒙 = 𝒚 

 
 

x=y 

𝑥2 + 𝑦2 = 𝑟2
 

𝑥2 + 𝑦2 = 2𝑥 

𝑟2 = 2𝑟𝑐𝑜𝑠𝜃 

𝑟 =  2𝑐𝑜𝑠𝜃 
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∫ ∫ 𝑟𝑠𝑖𝑛𝜃 𝑑𝐴 =  

𝑟=2𝑐𝑜𝑠𝜃

𝑟=0

𝜃=
𝜋
2

𝜃=
𝜋
4

∫ ∫ 𝑟𝑠𝑖𝑛𝜃 𝑟𝑑𝑟𝑑𝜃  

𝑟=2𝑐𝑜𝑠𝜃

𝑟=0

𝜃=
𝜋
2

𝜃=
𝜋
4

 

∫ ∫ 𝑟2𝑠𝑖𝑛𝜃 𝑑𝑟𝑑𝜃  

𝑟=2𝑐𝑜𝑠𝜃

𝑟=0

𝜃=
𝜋
2

𝜃=
𝜋
4

 

 

Use integration by part to solve the double integral, you’ll get 

 

∫ ∫ 𝑟2𝑠𝑖𝑛𝜃 𝑑𝑟𝑑𝜃 =  
1

6
  

𝑟=2𝑐𝑜𝑠𝜃

𝑟=0

𝜃=
𝜋
2

𝜃=
𝜋
4

 

 

 

11.2.3 Application of Double Integral Using Polar Coordinates to Find Volume 

 

Example 11.4 

Find the volume between region 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐= 2 and region z=√𝒙𝟐 + 𝒚𝟐 

Solution: 

 

Both regions have the equation of sphere, find the intersection 

 

𝑥2 + 𝑦2+𝑧2= 2  ------ (1) 

z=√𝑥2 + 𝑦2 --------------- (2) 

 

(1) – (2) 

𝑥2 + 𝑦2 = 1  

 

Hence, r = 1 

Find which region is at top and bottom by plug in (0,0) into eq. (1) and eq. (2) 
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z = 𝑥2 + 𝑦2+𝑧2= 2  ------ (1)   → z = 2   (top) 

z=√𝑥2 + 𝑦2 --------------- (2)  → z = 0   (bottom) 

To find the volume between two regions, we need to know the zbetween 

 

Hence, zbetween = ztop -zbottom  →  √2 − 𝑥2 − 𝑦2   - √𝑥2 + 𝑦2 = √2 − 𝑟2 - √𝑟2 = √2 − 𝑟2 − 𝑟  

 

Set up the integral: 

∫ ∫ (√2 − 𝑟2 − 𝑟) 𝑟𝑑𝑟𝑑𝜃  

𝑟=1

𝑟=0

𝜃=2𝜋

𝜃=0

 

 

Solve the integral: 

 

∫ ∫ 𝑟√2 − 𝑟2 − 𝑟2 𝑑𝑟𝑑𝜃 =  
4𝜋

3
 √2 − 1 

𝑟=1

𝑟=0

𝜃=2𝜋

𝜃=0

 

 

 

 

11.3 TRIPLE INTEGRAL IN CYLINDRICAL COORDINATE AND SPHERICAL 

COORDINATE & ITS APPLICATION 

11.3.1 Polar Coordinates Versus Spherical Coordinates 

To handle issues requiring circular symmetry more easily, we previously showed how to convert a 

double integral in rectangular coordinates into a double integral in polar coordinates. Similar 

circumstances arise with triple integrals. However, in this case, it is important to distinguish between 

spherical and cylindrical symmetry. This section transforms the triple integrals in rectangular 

coordinates into a triple integral in cylindrical or spherical coordinates. 

As we have previously seen, a point with rectangular coordinates (x, y) in two-dimensional space R-2 

can be converted to polar coordinates (r cos θ, r sin θ) and vice versa. The relationships between the 

variables are as follows: x=r cos θ, y=r sin θ, r2=x2+y2, and tan=(y/x). 

A point with rectangular coordinates (x, y, z) in three-dimensional space R-3 can be identified with 

cylindrical coordinates (r, θ, z), and vice versa. The vertical distance to the point from the xy- plane, 

added as z, can be calculated using the same conversion relationships. 
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Figure 11.7 Cylindrical coordinates are identical to polar coordinates with vertical z-coordinate as 

addition. 

Notes:  

Cylindrical coordinates are polar coordinates with a ‘z’ component. 

Polar coordinates (r, θ) → cylindrical coordinates (r, θ, z) 

 

The ‘r’ is the distance to projection point on the xy-plane.  

The ‘θ’ is the angle from the +ve x-axis to the projection point on the xy-plane.  

The ‘z’ is the height from the projection point to the xy-plane. 

 

To convert from cylindrical to rectangular coordinates, we use the equations 

 

whereas to convert from rectangular to cylindrical coordinates, we use 
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11.3.2 Triple Integral in Cylindrical Coordinates  

 

When evaluating triple integrals, cylindrical coordinates are frequently easier to use than 
rectangular ones. The following list in Table 11.1 includes several typical surface equations in 
rectangular coordinates and their corresponding equations in cylindrical coordinates. 
 

Table 11.1 list of typical surface equation 
 Cylinder Cone Sphere Paraboloid 

Rectangular 𝑥2 + 𝑦2 = 𝑐2 𝑧2 = 𝑐2(𝑥2 + 𝑦2) 𝑥2 + 𝑦2 + 𝑧2 = 𝑐2 𝑧 = 𝑐(𝑥2 + 𝑦2) 
Cylinder  𝑟 = 𝑐 𝑧 = 𝑐𝑟 𝑟2 + 𝑧2 = 𝑐2 𝑧 = 𝑐𝑟2 

 

 
Figure 11.8 Type I region 

 

Suppose that E is a type 1 region whose projection D onto the xy-plane is conveniently 

described in polar coordinates (see Figure 11.8). It says that we convert a triple integral from 

rectangular to cylindrical coordinates by writing x = r cos θ, y = r sin θ, leaving z as it is, using 

the appropriate limits of integration for z, r, and θ, and replacing dV by r dz dr   dθ. (Figure 11.9 

shows how to remember this. 

 
 

Figure 11.9: Volume element in cylindrical coordinates: (r, θ, z) 
 
 
 
 

dV= r dz dr dθ 
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Suppose that f is continuous and 

 

E = {(x, y, z) | (x, y) ∈ 𝐷, u1(x, y) ≤ z ≤ u2(x, y)} 

 where D is given in polar coordinates by 

D = {(r, θ) | ∝≤ 𝜃 ≤ 𝛽 , h1(θ) ≤ r ≤ h2(θ)} 

We know 
 
 
 

Hence, to evaluate the triple integral for cylindrical coordinates, we use the following 
formula: 

 

∭ 𝑬 𝒇(𝒙, 𝒚, 𝒛) 𝒅𝒛𝒓𝒅𝒓𝒅𝜽 = ∫ ∫ ∫ 𝒇(𝒓𝒄𝒐𝒔 𝜽, 𝒓𝒔𝒊𝒏𝜽, 𝒛) 𝒅𝒛𝒓𝒅𝒓𝒅𝜽

𝒛=𝒃

𝒛=𝒂

𝒓=𝒄

𝒓=𝒅

𝜽=𝜷

𝜽=𝜶

 

 

  

 

11.3.2.1 Finding A Cylindrical Volume Using Triple Integral  

 

Example 11.5 

Find the volume of T: solid bound by 𝒙
𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟗 and 𝟖𝒛 =  𝒙𝟐 + 𝒚𝟐

   

 

Steps:  

If possible, always solve the dz first as we will end up with r dr dθ (which like double integral). 

 

𝑥2 + 𝑦2 + 𝑧2 = 9 ---- (1)  

 8𝑧 =  𝑥2 + 𝑦2
---- (2) 

 

To determine which Z region is top and bottom of plane is by plug in (0,0) into the eq. (1) and (2).  

 

We’ll get z= 3 --- eq. (1) and z= 0 --- eq. (2). Thus, eq. (1) at top and eq. (2) at bottom. 

It is worthwhile to use this formula when E is a solid region easily described in cylindrical 

coordinates, and when function f (x, y, z) involves the expression x2 + y2. 
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𝑥2 + 𝑦2 + 𝑧2 = 9 ---- (1)  → top 

𝑟2 + 𝑧2 = 9  

𝑧 = √9 − 𝑟2  

 

8𝑧 =  𝑥2 + 𝑦2
---- (2) →bottom 

8𝑧 = 𝑟2
 

𝑧 = 𝑟2
/8 

𝑟2

8
≤ 𝑧 ≤ √9 − 𝑟2

 

 

Then, we find r by finding the intersection. 

 

eq. (1)– eq. (2) 

𝑧2 + 8𝑧 − 9 = 0 

z= -9 and 1 (we only consider the +ve value) 

 

 

When z=1 

8 (1) =  𝑥2 + 𝑦2
  

𝑥2 + 𝑦2 = 𝑟2
 → r = 2√2 

 

 

Set up the integral: 

 

∫ ∫ ∫ 1  𝑑𝑧

𝑧=√9−𝑥2−𝑦2

𝑧=
𝑥2+𝑦2

8

𝑟𝑑𝑟𝑑𝜃  

𝑟=2√2

𝑟=0

𝜃=2𝜋

𝜃=0

 

Answer: 40
𝜋

3
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Example 11.6 

Let E be the region bounded below by the rθ -plane, above by the sphere x2+y2+z2=4, and on the 

sides by the cylinder x2+y2=1. Set up a triple integral in cylindrical coordinates to find the volume of 

the region 

 

 

Solution: 

Solve the dz first 

Use the equation of sphere to find z: 

 

x2+y2+z2=4 → z = √4 − 𝑥2 − 𝑦2
= √4 − 𝑟2

 

 

Hence, 0 ≤ 𝑧 ≤ √4 − 𝑟2
 

 

The equation of cylinder: x2+y2=12  → x2+y2=r2,  r = 1 

 

Hence, 0 ≤ 𝑟 ≤ 1 

 

 

Set up the integral: 

∫ ∫ ∫ 1  𝑑𝑧

𝑧=√4−𝑟2

𝑧=0

𝑟𝑑𝑟𝑑𝜃  

𝑟=1

𝑟=0

= 2𝜋(
8

3
− √3

𝜃=2𝜋

𝜃=0

) 
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11.3.3 Triple Integral in Spherical Coordinates  

 

In three-dimensional space R-3 in the spherical coordinate system, we specify a point P by its 
distance ρ from the origin, the polar angle θ from the positive x-axis (same as in the cylindrical 
coordinate system), and the angle φ from the positive z-axis and the line OP. 
 

 
Figure 11.10 The spherical coordinate system locates points with two angles and a distance 

from the origin. 
 
 
 

* Spherical coordinate systems work well for solids that are symmetric around a point, such 
as spheres and cones. 

 
 
 

Notes: 
 
The definition for r and 𝜃  is the same as cylindrical coordinates. However, for spherical 
coordinates there are two additional symbols (ρ and φ). 
 
 
 
 
 
 
 
 
 

 
 

Because this is spherical coordinate, we 

must translate in terms of ρ, φ, 𝜽. 

 Where, 

𝑠𝑖𝑛𝜑 =  
𝑟

𝜌
, 𝑟 = 𝜌 sin 𝜑 

Thus. 

𝑥 = 𝑟 𝑐𝑜𝑠𝜃 → 𝜌 sin 𝜑  𝑐𝑜𝑠𝜃 

𝑦 = 𝑟 𝑠𝑖𝑛𝜃 → 𝜌 sin 𝜑  𝑠𝑖𝑛𝜃 

What about z? 

𝑐𝑜𝑠𝜑 =
𝑧

 → z= 𝜌 cos 𝜑  

cylindrical coordinate: (r, 𝜽, z) 
 
spherical coordinate: (ρ, 𝜽, 𝝋)  
(ρ ≥, 𝟎 ≤ 𝜽 ≤ 𝟐𝝅, 𝟎 ≤ 𝝋 ≤ 𝝅) 
 

Cylindrical equation: 𝒙𝟐 + 𝒚𝟐 = 𝒓𝟐 
 

Spherical equation: 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝝆𝟐 

It is very 
important to 
remember 
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We now establish a triple integral in the spherical coordinate system, as we did before in the 
cylindrical coordinate system. For the volume element of the subbox ΔV in spherical 
coordinates, we have ΔV=(Δρ)(ρΔφ)(ρsinφΔθ), as shown in the following Figure 11.11.  
 

 
Figure 11.11 The volume element of a box in spherical coordinates 

 

We know 
 
 
 

 

Hence, to evaluate the triple integral for cylindrical coordinates, we use the following 
formula: 

 

𝑥 = 𝑟 𝑐𝑜𝑠𝜃 → 𝜌 sin 𝜑  𝑐𝑜𝑠𝜃, 𝑦 = 𝑟 𝑠𝑖𝑛𝜃 → 𝜌 sin 𝜑  𝑠𝑖𝑛𝜃, and 𝑟 = 𝜌 sin 𝜑, 

Where, spherical coordinate: (ρ, 𝜃, 𝜑) and dV= 𝜌2𝑠𝑖𝑛𝜑 𝑑𝜌𝑑𝜃𝑑𝜑 
 

∭ 𝐸 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑉 = ∭ 𝑇 𝑓(𝜌, 𝜃, 𝜑) 𝜌2𝑠𝑖𝑛𝜑   𝑑𝜌𝑑𝜑𝑑𝜃 

∭ 𝑻 𝒇(𝝆, 𝜽, 𝝋) 𝝆𝟐𝒔𝒊𝒏𝝋   𝒅𝝆𝒅𝝋𝒅𝜽 = ∫ ∫ ∫ 𝒇(𝝆, 𝜽, 𝝋)  𝝆𝟐𝒔𝒊𝒏𝝋   𝒅𝝆𝒅𝝋𝒅𝜽

𝝆=𝒃

𝝆=𝒂

𝝋=𝝋𝟏

𝝋=𝝋𝟏

𝜽=𝜷

𝜽=𝜶
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11.3.3.1 Finding A Spherical Volume Using Triple Integral  

 

Example 11.7 

∭ 𝑻 √𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐𝒅𝑽, The region ‘T’ is sphere with equation of 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟏 

 

Solution: 

 

For spherical coordinates, always solve 𝑑𝜌 first. 

 

𝑥2 + 𝑦2 + 𝑧2 = 𝜌2 

𝑥2 + 𝑦2 + 𝑧2 = 1 

 

Hence, 𝜌= ±1, we only consider positive value 

Remember: ρ ≥, 𝟎 ≤ 𝜽 ≤ 𝟐𝝅, 𝟎 ≤ 𝝋 ≤ 𝝅) 

 

Then, solve  𝑑𝜑,  set x= o, Remember, 𝜑 always on yz-plane. Then, we will get  

0 + 𝑦2 + 𝑧2 = 1 

 

 

Next, solve 𝑑𝜃 by setting z=0. Remember 𝜃 always on xy-plane → we will get 𝑦2 + 𝑥2 = 1 

 

 

0 ≤ φ ≤ π 

Although it can form 2π, 

the φ is never more than π 

0 ≤ 𝜃 ≤ 2π 
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Set up the integral: ∫ ∫ ∫ √𝑥2 + 𝑦2 + 𝑧2 𝜌2𝑠𝑖𝑛𝜑𝑑𝜌𝑑𝜑𝑑𝜃
𝜌=1

𝜌=0

𝜑=𝜋

𝜑=0

𝜃=2𝜋

𝜃=0
 

∫ ∫ ∫ √𝜌2 𝜌2𝑠𝑖𝑛𝜑𝑑𝜌𝑑𝜑𝑑𝜃 =

𝜌=1

𝜌=0

𝜑=𝜋

𝜑=0

𝜃=2𝜋

𝜃=0

 ∫ ∫ ∫ 𝜌3𝑠𝑖𝑛𝜑𝑑𝜌𝑑𝜑𝑑𝜃 =  𝜋

𝜌=1

𝜌=0

𝜑=𝜋

𝜑=0

𝜃=2𝜋

𝜃=0

 

 

Example 11.8 

 ∭ 𝑻 𝒙𝒛 𝒅𝑽, The region ‘T’ is solid bound by 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟒 and 𝒛 = √𝒙𝟐 + 𝒚𝟐 

 

Solution: 

Observe the given equation if the question did not stated type of geometrical shape. 

 

In this question: 

 𝑥2 + 𝑦2 + 𝑧2 = 4 → spherical shape 

𝑧 = √𝑥2 + 𝑦2 → cone shape  

 

For spherical coordinates, always solve 𝑑𝜌 first. 

𝑥2 + 𝑦2 + 𝑧2 = 𝜌2 

𝑥2 + 𝑦2 + 𝑧2 = 4 

𝜌 = 2 

 

0 ≤ 𝜌 ≤ 2 

 

Then, to solve  𝑑𝜑,  set x= o, we will get 𝑦2 + 𝑧2 = 4 (from the spherical, it gives us circle equation) 

and 𝑧 = √𝑦2 (from the cone, it gives us line equation) 

 



49 
 

 

 

Next, solve 𝑑𝜃 by setting z=0. Remember 𝜃 always on xy-plane → we will get 𝒙𝟐 + 𝒚𝟐 = 𝟒  

 

 

Set up the integral:  

 ∫ ∫ ∫
𝑥𝑧 𝜌2𝑠𝑖𝑛𝜑𝑑𝜌𝑑𝜑𝑑𝜃 =

 

𝜌=2

𝜌=0

𝜑=
𝜋

2

𝜑=
𝜋

4

𝜃=2𝜋

𝜃=0 ∫ ∫ ∫ 𝜌𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃𝜌𝑐𝑜𝑠𝜑 𝜌2𝑠𝑖𝑛𝜑𝑑𝜌𝑑𝜑𝑑𝜃
𝜌=2

𝜌=0

𝜑=
𝜋

2

𝜑=
𝜋

4

𝜃=2𝜋

𝜃=0
 

Fo this equation, you will end up with  

∫ ∫ ∫ 𝜌𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃𝜌𝑐𝑜𝑠𝜑 𝜌2𝑠𝑖𝑛𝜑𝑑𝜌𝑑𝜑𝑑𝜃

𝜌=2

𝜌=0

𝜑=
𝜋
2

𝜑=
𝜋
2

𝜃=2𝜋

𝜃=0

= 0 

Tips: if you end up with zero for polar coordinate question, try to change the 

∫ 𝑡𝑜 2 ∫ 𝑂𝑅 4 ∫ 𝑂𝑅 𝑒𝑡𝑐.
𝜃=

𝜋

2

𝜃=0

𝜃=𝜋

𝜃=0

𝜃=2𝜋

𝜃=0
 

 

 

 

 

 

Although it can form π, the geometry for 

the region ‘T’ is ice cream cone shape which 

involved only the upper half cylinder and a 

cone. Hence, the φ is: 

π

4
≤ φ ≤

π

2
 

 

0 ≤ 𝜃 ≤ 2π 

π

4
 

π

2
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11.3.4 Application of Triple Integral Using Polar Coordinates to Find 

 

11.3.4.1 Centre of Mass 

The expressions for the centre of mass (�̅�, �̅�, 𝑧̅) of a solid of density 𝜌(𝑥, 𝑦, 𝑧) are given below 

�̅� =
∫ 𝜌(𝑥, 𝑦, 𝑧)𝑥 𝑑𝑉

∫ 𝜌(𝑥, 𝑦, 𝑧) 𝑑𝑉
=

𝑀𝑦𝑧

𝑀
 

�̅� =
∫ 𝜌(𝑥, 𝑦, 𝑧)𝑦 𝑑𝑉

∫ 𝜌(𝑥, 𝑦, 𝑧) 𝑑𝑉
=  

𝑀𝑥𝑧

𝑀
 

𝑧̅ =
∫ 𝜌(𝑥, 𝑦, 𝑧)𝑧 𝑑𝑉

∫ 𝜌(𝑥, 𝑦, 𝑧) 𝑑𝑉
=

𝑀𝑥𝑦

𝑀
 

Where  

𝑀 = ∭ 𝑇 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑉 = ∭ 𝑇 𝜌(𝑥, 𝑦, 𝑧) 𝑑𝑧𝑟𝑑𝑟𝑑𝜃 

 

If 𝜌 does not vary with position, these simplify to 

�̅� =
∫ 𝑥 𝑑𝑉

∫ 𝑑𝑉
          �̅� =

∫ 𝑦 𝑑𝑉

∫ 𝑑𝑉
           𝑧̅ =

∫ 𝑧 𝑑𝑉

∫ 𝑑𝑉
 

 

 

Example 11.9 

Find centre of mass of solid bound by 𝒙𝟐 + 𝒚𝟐 = 𝟒, 𝒛 = 𝟎, 𝒛 = 𝟑, where the mass density at a point 

is directly proportional to the point distance from xy-plane. 

 

Solution: 

 

𝑥2 + 𝑦2 = 4 is a circle equation and the geometrical shape is cylindrical  

Mass density, 

𝜌(𝑥, 𝑦, 𝑧) = 𝑘. 𝑧 
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Hence, we need to find r, 𝜃, z 

The dz has been solved where question gave us z= 0 and z =3 

Then, find r,  

𝑥2 + 𝑦2 = 4, 𝑟 = 2  

 

Set up the integral 

𝑀 = ∭ 𝑇 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑉 = ∭ 𝑇 𝜌(𝑥, 𝑦, 𝑧) 𝑑𝑧𝑟𝑑𝑟𝑑𝜃 

𝑀 = ∫ ∫ ∫ 𝑘. 𝑧 𝑑𝑧 𝑟 𝑑𝑟𝑑𝜃

𝑧=3

𝑧=0

= 18 𝑘𝜋

𝑟=2

𝑟=0

𝜃=2𝜋

𝜃=0

 

In this question, the centre of mass for the mass density at a point is directly proportional to the 

distance from xy-plane. Hence, the centre of mass for �̅� 𝑎𝑛𝑑 �̅� is 0. Thus, we only need to find the 𝑧̅. 

 

𝑀𝑥𝑦 = ∫ ∫ ∫ 𝑧. 𝑘. 𝑧 𝑑𝑧 𝑟 𝑑𝑟𝑑𝜃

𝑧=3

𝑧=0

= 36 𝑘𝜋

𝑟=2

𝑟=0

𝜃=2𝜋

𝜃=0

 

𝑧̅ =
36𝑘𝜋

18𝑘𝜋
= 2 

 

The centre of mass (C.O.M) = (0,0,2) 

0 ≤ 𝑟 ≤ 2 

0 ≤ 𝜃 ≤ 2𝜋 
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11.3.4.2 Moment of Inertia  

 

Recall back section 10.4.2 (moment of inertia) 

The moment of inertia 𝐼 of a small particle of mass 𝑚 is defined as 

𝐼 =  Mass ×  Distance2 or 𝐼 =  𝑚𝑑2 

where 𝑑 is the perpendicular distance from the particle to the axis. 

To find the Moment of Inertia of a larger object, it is necessary to carry out a volume integration over 

all such particles. The distance of a particle at (𝑥, 𝑦, 𝑧) from the z-axis is given by √𝑥2 + 𝑦2 so the 

moment of inertia of an object about the 𝑧-axis is given by 

𝐼𝑧 = ∫ 𝜌(𝑥, 𝑦, 𝑧)
𝑉

(𝑥2 + 𝑦2)𝑑𝑉 

Similarly, the Moments of Inertia about the 𝑥- and 𝑦-axes are given by 

𝐼𝑥 = ∫ 𝜌(𝑥, 𝑦, 𝑧)
𝑉

(𝑧2 + 𝑦2) 𝑑𝑉 

𝐼𝑦 = ∫ 𝜌(𝑥, 𝑦, 𝑧)
𝑉

(𝑥2 + 𝑧2) 𝑑𝑉 

 

Example 11.10 

Find the moment of inertia of a uniform sphere of mass M and radius a about a diameter. 

Solution: 

A sphere of radius 𝑎 has volume 4𝜋𝑎3/3, so that its density is 3𝑀/4𝜋𝑎3. Then the moment of 

inertia of the sphere about the 𝑧 axis is 

𝐼 =
3𝑀

4𝜋𝑎3
∭(𝑥2 + 𝑦2)

𝑉

𝑑𝑥 𝑑𝑦 𝑑𝑧 

In this example it is natural to use spherical polar coordinates (recall that 𝑥 = 𝑟 sin 𝜃 cos 𝜙, 𝑦 =

𝑟 sin 𝜃 sin 𝜙, 𝑧 = 𝑟 cos 𝜃 and 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 𝑟2 sin 𝜃  𝑑𝑟 𝑑𝜃 𝑑𝜙 ), so that 

 𝐼 =
3𝑀

4𝜋𝑎3
∭(𝑟2 sin2 𝜃 cos2 𝜙 + 𝑟2 sin2 𝜃 cos2 𝜙)𝑟2 sin 𝜃

𝑉

𝑑𝜙 𝑑𝜃 𝑑𝑟 

𝐼 =
3𝑀

4𝜋𝑎3
∭(𝑟2 sin2 𝜃 cos2 𝜙 + 𝑟2 sin2 𝜃 sin2 𝜙)𝑟2 sin 𝜃

𝑉

𝑑𝜙 𝑑𝜃 𝑑𝑟 
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      =
3𝑀

4𝜋𝑎3
∭(𝑟2 sin2 𝜃) 𝑟2 sin 𝜃

𝑉

𝑑𝜙 𝑑𝜃 𝑑𝑟 

      =
3𝑀

4𝜋𝑎3
∫ ∫ ∫ 𝑟4 sin3 𝜃 𝑑𝜙

2𝜋

𝜙=0

𝑑𝜃 𝑑𝑟 

𝜋

𝜃=0

𝑎

𝑟=0

 

      =
3𝑀

4𝜋𝑎3
∫ 𝑟4𝑑𝑟

𝑎

𝑟=0

∫ sin3 𝜃

𝜋

𝜃=0

𝑑𝜃 ∫ 𝑑𝜙

2𝜋

𝜙=0

 

      =
3𝑀

4𝜋𝑎3 [
1

5
𝑟5]

𝑟=0

𝑎

[
1

12
cos 3𝜃 +

3

4
cos 𝜃]

𝜃=0

𝜋

[𝜙]𝜙=0
2𝜋  

=
3𝑀

4𝜋𝑎3 [
1

5
𝑟5]

𝑟=0

𝑎

[
1

12
cos 3𝜃 −

3

4
cos 𝜃]

𝜃=0

𝜋

[𝜙]𝜙=0
2𝜋  

      =
3𝑀

4𝜋𝑎3
(

8

15
𝜋𝑎5) 

      =
2

5
𝑀𝑎2.      ∎ 

 




