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LINE INTEGRALS 
WEEK 12: LINE INTEGRALS 

12.1 INTRODUCTION 

 
Since in evaluating line integral we need to express the curve in parametric equation as 
function of t, let recognize parametric representation first. 
 
Bodies that move in space form paths that may be represented by curves C. This and other 
applications show the need for parametric representations of C with parameter t, which may 
denote time or something else (see Fig. 12.1). A typical parametric representation is given by 
 

 

Figure 12.1: Parametric representation of curve 

 

Here t is the parameter and x, y, z are Cartesian coordinates, that is, the usual rectangular 
coordinates. To each value 𝑡 = 𝑡𝑜 , there corresponds a point of C with position vector 𝑟(𝑡𝑜) 
whose coordinates are 𝑥(𝑡𝑜), 𝑦(𝑡𝑜), 𝑧(𝑡𝑜). 
 

 

When we give parametric equations and a parameter interval for a curve, we say that we have 
parametrized the curve. The equations and interval together constitute a parametrization of 
the curve. A given curve can be represented by different sets of parametric equations. 
 

 

 

The advantages of using parametric representation are that, the coordinates x, y, z all play an 
equal role, that is, all three coordinates are dependent variables. Moreover, the parametric 
representation induces an orientation on C. This means that as we increase t, we travel along 
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the curve C in a certain direction. The sense of increasing t is called the positive sense on C. 
The sense of decreasing t is then called the negative sense on C. 
 

Table 12.1: Parametric Equation for Some Basic Curves 

 

 

 

EXAMPLE 12.1: Circle. Parametric Representation. Positive Sense 
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12.2 BASIC CONCEPTS 

 

In a line integral, we shall integrate a given function, also called the integrand, along a curve C in 

space or in the plane as shown in Figure 3.2. (Hence curve integral would be a better name but line 

integral is standard.)  

 

 

 

Figure 12.2: Oriented curves 

 

 

This requires that we represent the curve C by a parametric representation 

               (1) 
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The curve C is called the path of integration. Look at Fig. 12.2a. The path of integration goes from A 

to B. Thus A: r(a) is its initial point and B: r(b) is its terminal point. C is now oriented. The direction 

from A to B, in which t increases is called the positive direction on C. We mark it by an arrow. The 

points A and B may coincide, as it happens in Fig. 12.2b. Then C is called a closed path. 

A line integral of a vector function F(r) over a curve C: r(t) is defined by 

 

                                                    (2) 

 

Where  𝑟′ =
𝑑𝑟

𝑑𝑡
 and r(t) is the parametric representation of C as given in (2). Writing (2) in terms of 

components, with dr = [dx, dy, dz] and  ′ = 𝑑
𝑑𝑡 ⁄  , we get 

∫ 𝑭(𝒓) ⋅ 𝑑𝒓 = ∫ 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 + 𝑃 𝑑𝑧
𝐶𝐶

 

                                                                                = ∫ 𝑀 𝑥′
𝑏

𝑎

+ 𝑁 𝑦′ + 𝑃 𝑧′ 𝑑𝑡 

 

Note that the integrand in (2) is a scalar, not a vector, because we take the dot product. Indeed, 

𝐹● 𝑟′ |𝑟′| ⁄  is the tangential component of F. Line integrals arises naturally in mechanics, where they 

give the work done by a force F in a displacement along C. This will be explained in detail below. We 

may thus call the line integral (2) the work integral. 
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EXAMPLE 12.2: Evaluation of a Line Integral in the Plane 

 

Find the value of line integral when  𝐹(𝑟) = [−𝑦, −𝑥𝑦] = −𝑦𝒊 − 𝑥𝑦𝒋 and C is the circular arc 

from A to B.  

 

 

 

 

EXAMPLE 12.3: Line Integral in Space 

 

The evaluation of line integral in space is practically the same as it is in the plane. To see this, 

find the value of line integral when 𝐹(𝑟) = [𝑧, 𝑥, 𝑦] = 𝑧𝒊 + 𝑥𝒋 + 𝑦𝒌 and C is the helix. Given 

that 

𝑟(𝑡) = [cos 𝑡, sin 𝑡, 3𝑡] = cos 𝑡𝒊 + sin 𝑡𝒋 + 3𝑡𝒌 
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EXAMPLE 12.4: Evaluation of a Line Integral along the Curve, C 

Evaluate ∫ F ∙ dr,
c

 where F (x, y, z) = zi + xy j – y2k along the curve C given by 𝑟(𝑡) = 𝑡2𝒊 + 𝑡𝒋 +

√𝑡𝒌, 0 ≤ 𝑡 ≤ 1. 

 

𝑺𝑶𝑳 =
𝟏𝟕

𝟐𝟎
 

Simple general properties of the line integral (2) 
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Figure 12.3 Formula (c) 

 

where in (c) the path C is subdivided into two arcs and that have the same orientation as C (Fig. 12.3). 

In (b) the orientation of C is the same in all three integrals. If the sense of integration along C is 

reversed, the value of the integral is multiplied by -1. 

12.3 LINE INTEGRAL: WORK DONE BY FORCE  

 

Suppose that the vector field F = M(x, y, z)i + N(x, y, z)y + P(x, y, z)k represents a force throughout a 

region in space (it might be the force of gravity or an electromagnetic force of some kind) and that 

 

𝑟(𝑡) = 𝑔(𝑡)𝒊 + ℎ(𝑡)𝒌 + 𝑘(𝑡)𝒌,             𝑎 ≪ 𝑡 ≪ 𝑏,  

 

is a smooth curve in the region. For a curve C in space, we define the work done by a continuous 

force field F to move an object along C from a point A to another point B as follows. 

 

 

 

In other words, the work done by a force F is the line integral of the scalar component F.T over the 

smooth curve from A to B as shown in Fig 12.4. The sign of the number we calculate with this integral 

depends on the direction in which the curve is traversed. If we reverse the direction of motion, then 

we reverse the direction of T in Figure 12.4 and change the sign of and its integral.  
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Figure 12.4: The work done by a force F is the line 

 

EXAMPLE 12.5 
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EXAMPLE 12.6 

Find the work done by the force fields F = xi + yj +zk in moving an object along the curve C 

parameterized by 𝑟(𝑡) = cos(𝜋t) i + 𝑡2𝑗 + sin(𝜋𝑡) 𝑘, 0 ≤ 𝑡 ≤ 1 
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Path Dependence 

 

Take, for instance, the straight segment 𝐶1 ∶  𝑟1(𝑡) =  [𝑡, 𝑡, 0]   and the parabola 𝐶2 ∶  𝑟2(𝑡) =

 [𝑡, 𝑡2, 0] as shown in Figure 12.5 with  0 ≤ t ≤ 1 and integrate F = [0, 𝑥𝑦, 0]. Then 

 

For curve 𝐶1 ∶  𝑟1
′(𝑡) =  [1, 1, 0], 𝐹 = [0, (𝑡)(𝑡), 0], therefore 𝐹(𝑟1(𝑡))●𝑟1

′(𝑡) =  𝑡2 

For curve 𝐶2 ∶  𝑟2
′(𝑡) =  [1, 2𝑡, 0], 𝐹 = [0, (𝑡)(𝑡2), 0], therefore 𝐹(𝑟2(𝑡))●𝑟2

′(𝑡) =  2𝑡4 

 

It is obvious that the two integrands of the line integral are different even though the two 

curves share the same endpoints A and B. Logically, this gives different values of 1/3 and 2/5 

respectively. 

 

 

Figure 12.5: Proof of Theorem 

 

As an additional information, if a vector function F is the gradient of a scalar function 𝐹 = ∇𝑓, this 

vector function F is known as a conservative vector field, and its line integral is interestingly 

independent on path, which means integrating F along C1 or C2 produces the same value for the same 

endpoints A and B: ∫ 𝐹. 𝑑𝑟1𝑐1
= ∫ 𝐹. 𝑑𝑟2𝑐2
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EXAMPLE 12.7: 

Evaluate the line integral with the vector function given as 𝐹(𝑥, 𝑦) = (𝑥 − 𝑦)𝒊 + 𝑥𝒋 . The 

curve C is a closed curve that forms a unit circle. A closed circular curve can be parameterized 

as below, considering a range of t that forms the complete circular path:  

𝐶: 𝑟(𝑡) = cos(𝑡) 𝒊 + sin(𝑡) 𝒋,           0 ≤ 𝑡 ≤ 2𝜋 

 

Solution 

From 𝐹(𝑥, 𝑦) = (𝑥 − 𝑦)𝒊 + 𝑥𝒋 and 𝐶: 𝑟(𝑡) = cos(𝑡) 𝒊 + sin(𝑡) 𝒋, 0 ≤ 𝑡 ≤ 2𝜋, we obtain: 

𝐹(𝑥, 𝑦) = (𝑥 − 𝑦)𝒊 + 𝑥𝒋, 
𝑑𝑟

𝑑𝑡
= − sin(𝑡)𝒊 + cos(𝑡)𝒋 

Therefore: 𝐹.
𝑑𝑟

𝑑𝑡
= − sin 𝑡 cos 𝑡 + sin2 𝑡 + cos2 𝑡 = − sin 𝑡 cos 𝑡 + 1 

∫ (− sin 𝑡)(cos 𝑡) + 1
2𝜋

0
 𝑑𝑡 =  [

(cos 𝑡)2

2
+ 𝑡]

0

2𝜋

  

          =  (
1

2
+ 2𝜋) − (

1

2
+ 0) 

          = 2𝜋 

 

Figure 12.6: The vector field has a counter clockwise circulation of 2π around the unit circle. 
 

 

EXAMPLE 12.8 

Evaluate the closed-curve line integral  

∮ −𝑦2𝑑𝑥 + 𝑥𝑦𝑑𝑦
𝐶

, 

 

Where C is the square cut from the first quadrant by the lines x = 1 and y = 1 (counter-clockwise) 
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Solution 

 

∮ −𝑦2𝑑𝑥 + 𝑥𝑦𝑑𝑦
𝐶

= ∮ (−𝑦2 (
𝑑𝑥

𝑑𝑡
) + 𝑥𝑦 (

𝑑𝑦

𝑑𝑡
)) 𝑑𝑡

𝐶1
+ ⋯ + ∮ (−𝑦2 (

𝑑𝑥

𝑑𝑡
) + 𝑥𝑦 (

𝑑𝑦

𝑑𝑡
)) 𝑑𝑡

𝐶4
 : 

C1: y=0, 0≤x≤1 (from 0 to 1) Use x=t, y=0 

𝑑𝑥

𝑑𝑡
= 1, 

𝑑𝑦

𝑑𝑡
= 0 

∫ (−(02)(1) + (𝑡)(0)(0))
1

0
𝑑𝑡 = 0  

C2: x=1, 0≤y≤1 (from 0 to 1) Use x=1, y=t 

𝑑𝑥

𝑑𝑡
= 0, 

𝑑𝑦

𝑑𝑡
= 1 

∫ (−(𝑡2)(0) + (1)(𝑡)(1))
1

0
𝑑𝑡 = [

𝑡2

2
]

0

1

=

1

2
  

C3: y=1, 0≤x≤1 (from 1 to 0) Use x=t, y=1 

𝑑𝑥

𝑑𝑡
= 1, 

𝑑𝑦

𝑑𝑡
= 0 

∫ (−(12)(1) + (𝑡)(1)(0))
0

1
𝑑𝑡 =

− ∫ −1𝑑𝑡
1

0
= [𝑡]0

1 = 1  

C4: x=0, 0≤y≤1 (from 1 to 0) Use x=0, y=t 

𝑑𝑥

𝑑𝑡
= 0, 

𝑑𝑦

𝑑𝑡
= 1 

∫ (−(𝑡2)(0) + (0)(𝑡)(1))
1

0
𝑑𝑡 = 0  

Therefore, ∮ −𝑦2𝑑𝑥 + 𝑥𝑦𝑑𝑦
𝐶

= 0 +
1

2
+ 1 + 0 =

3

2
 

 

EXAMPLE 12.9 

Compute ∮ 𝑥𝑦 𝑑𝑥 + 𝑥𝑦 𝑑𝑦, over the counter-clockwise rectangle with corners (1,1), (3,1), (3,2), (1,2).  

 

Solution 

∮ 𝑥𝑦𝑑𝑥 + 𝑥𝑦𝑑𝑦
𝐶

= ∮ (𝑥𝑦 (
𝑑𝑥

𝑑𝑡
) + 𝑥𝑦 (

𝑑𝑦

𝑑𝑡
)) 𝑑𝑡

𝐶1
+ ⋯ + ∮ (𝑥𝑦 (

𝑑𝑥

𝑑𝑡
) + 𝑥𝑦 (

𝑑𝑦

𝑑𝑡
)) 𝑑𝑡

𝐶4
  

C1: y=1, 1≤x≤3 (from 1 to 3) Use x=t, y=1 

𝑑𝑥

𝑑𝑡
= 1, 

𝑑𝑦

𝑑𝑡
= 0 

∫ ((𝑡)(1)(1) + (𝑡)(1)(0))
3

1
𝑑𝑡  

= ∫ 𝑡𝑑𝑡
3

1
=

8

2
  

C2: x=3, 1≤y≤2 (from 1 to 2) Use x=3, y=t 

𝑑𝑥

𝑑𝑡
= 0, 

𝑑𝑦

𝑑𝑡
= 1 

∫ ((3)(𝑡)(0) + (3)(𝑡)(1))
2

1
𝑑𝑡  

= ∫ 3𝑡𝑑𝑡
2

1
=

9

2
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C3: y=2, 1≤x≤3 (from 3 to 1) Use x=t, y=2 

𝑑𝑥

𝑑𝑡
= 1, 

𝑑𝑦

𝑑𝑡
= 0 

∫ ((𝑡)(2)(1) + (𝑡)(2)(0))
1

3
𝑑𝑡  

= − ∫ 2𝑡𝑑𝑡
3

1
= −

16

2
  

C4: x=1, 1≤y≤2 (from 2 to 1) Use x=1, y=t 

𝑑𝑥

𝑑𝑡
= 0, 

𝑑𝑦

𝑑𝑡
= 1 

∫ ((1)(𝑡)(0) + (1)(𝑡)(1))
1

2
𝑑𝑡  

= − ∫ 𝑡𝑑𝑡
2

1
= −

3

2
  

∮ 𝑥𝑦 𝑑𝑥 + 𝑥𝑦 𝑑𝑦 =
8

2
+  

9

2
−  

16

2
−  

3

2
=  −1  

 

 

The solutions of line integral involving closed curve can be tedious when the closed curve is defined 

by multiple sections as in Examples 12.8 and 12.9. In some cases, it will be more convenient to relate 

a closed-curve line integral with an integral involving the curl of the vector function F over a surface 

that is bounded by the closed curve. This is known as the (circulation form of) Green’s theorem, which 

is explained in the topic of Stokes’ theorem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




