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SURFACE INTEGRALS 
WEEK 13: SURFACE INTEGRALS 

13.1 SURFACES FOR SURFACE INTEGRAL  

The idea that will lead to the concept of a surface integral is quite similar to that which led to a line 

integral. We say briefly ‘surface’ also for a portion of a surface, just as we said ‘curve’ for an arc of a 

curve, for simplicity. Representations of a surface S in xyz-space are 

( )yxfz ,=   or  ( ) 0,, =zyxg     (1) 

For example, 222 yxaz −−+=   or 02222 =−++ azyx (z ≥ 0) represents hemisphere of radius 

a and centre 0. 

Now for curves C in line integrals, it was more practical and gave greater flexibility to use a parametric 

representation r = r(t) where a ≤ t ≤ b. This is a mapping of the interval a ≤ t ≤ b located on the t-axis, 

onto the curve C in the xyz-space. It maps every t in that interval onto the point of C with position 

vector r(t) (see Figure 13.1) 

 

Figure 13.1 Parametric representations of a curve and a surface 

 
Similarly, for surfaces S in surface integrals, it will often be more practical to use a parametric 
representation. Surfaces are two-dimensional. Hence we need two parameters, which we call u and 
v. Thus a parametric representation of a surface S in space is of the form 
 

( ) ( ) ( ) ( )  ( ) ( ) ( ) k  ,,  ,,,,,,, vuzvuyvuxvuzvuyvuxvu ++==  j  ir    (2) 

 
when (u, v) varies in some region R of the uv-plane. This mapping (2) maps every point (u, v) in R onto 
the point of S with position vector r(u, v) (see Figure 13.1(B)). 
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Parametric Representation of a Cylinder 
 

The circular cylinder 
222 ayx =+ ,   -1 ≤ z ≤ 1, has radius a, height 2, and the z-axis as axis. A parametric 

representation is  
 

( )   kji  v   u sin a     u cos v  u, sin a  ,cos, ++== auavur     (3) 

 
The components of r are x = a cos u, y = a sin u, z = v. The parameters u, v vary in the rectangle R: 0 ≤ 
u ≤ 2π, -1 ≤ v ≤ 1 in the uv-plane. The curves u = const are vertical straight lines. The curves v = const 
are parallel circles. The point P in Figure 13.2 corresponds to u = π / 3 = 60°, v = 0.7. 
 

 

Figure 13.2  Parametric representation of a cylinder 

 

Parametric Representation of a Sphere  

A sphere 
2222 azyx =++ can be represented in the form 

( ) kj i   v sin  a   u sin v cos  a    u cos v  cos  , ++= avur     (4) 

where the parameters u, v vary in the rectangle R in the uv-plane given by the inequalities 0 ≤ u ≤ 2π, 

-π/2 ≤ v ≤ π/2. The components of r are  

u cos  v cos a    =x ,   u sin v cos  ay = ,   v  sin  az =  

The curves u = const and v = const are the ‘meridian’ and ‘parallels’ on S (as shown in Figure 13.3). This 

representation is used in geography for measuring the latitude and longitude of points on the globe. 

Another parametric representation of the sphere also used in mathematics is 

( ) kj i   v cos  a   v sin u sin  a    v sin   u cos  , ++= avur     (4*) 

where 0 ≤ u ≤ 2π, 0 ≤ v ≤ π 



16 
 

 

Figure 13.3 Parametric representation of a sphere 

 

Parametric Representation of a Cone 

A circular cone 22 yxz += , 0 ≤ z ≤ H can be represented by  

 ( )   kji  u   v sin  u    cos,sin,cos, ++== vuuvuvuvur     (5) 

in components x = u cos v, y = u sin v, z = u. The parameters vary in the rectangle R: 0 ≤ u ≤ H, 0 ≤ v  ≤ 

2π 

13.2 SURFACE INTEGRAL 

The extension of the idea of an integral to line and double integrals are not the only generalization 

that can be made. We can also extend the idea to integration over a general surface, S. Two types of 

such integrals occur: 

∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆

𝑆

 

 

∬ 𝑭(𝒓). 𝒏̂𝑑𝑆 = ∬ 𝑭(𝒓). 𝑑𝑺

𝑆𝑆

 

Note that 𝑑𝑺 = 𝒏̂𝑑𝑆 is the vector element of area, where 𝒏̂ is the unit outward-drawn normal vector 

to the element dS. 

 

c 

Scalar field, e.g.: 

surface density 

c 

(6) 

(7) Vector field, e.g.: 

fluid velocity 
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13.2.1 SURFACE INTEGRAL OF VECTOR FIELD 

In general, the surface S can be described in terms of two parameters, u and v say, so that on S 

( ) ( ) ( ) ( )  ( ) ( ) ( ) k  ,,  ,,,,,,, vuzvuyvuxvuzvuyvuxvu ++==  j  ir    

where (u, v) varies over a region R in the uv-plane. We assume S to be piecewise smooth, so that S has 

a normal vector 

vu rrN =  and unit normal vector  N
N

n
1

=  

at every point (except perhaps for some edges or cusps, as for a cube or cone). For a given vector 

function F we can now define the surface integral over S by 

( )( ) ( ) dvdu   vu,   . vu,rdS  .
R

NF =
S

nF      (8) 

Here nNN= by equation (4), and vu rrN = is the area of the parallelogram with sides ru and rv, by 

the definition of cross product. Hence 

 dv du dvdu  N== Nn n dS       (8*) 

and we see that dvdu  N=dS is the element of area of S.  

also F . n is the normal component of F. This integral arises naturally in flow problems, where it gives 

the flux across S when F = ρv. The flux across S is the mass of fluid crossing S per unit time. Furthermore, 

ρ is the density of the fluid and v the velocity vector of the flow, as illustrated by Example 13.1 below. 

We may thus call the surface integral (8) the flux integral. 

We can write (8) in components, using F = [F1,F2, F3], N = [N1,N2,N3], and n = [cos α, cos β, cos ϒ]. Here 

α, β, ϒ are the angles between n and the coordinate axes; indeed, for the angle between n and i.  

( ) dS  coscoscosdS   . 321 ++=
SS

FFF nF     (9) 

 ( ) dv  du  332211 ++=
R

NFNFNF  

In (9) we can write cos α dS = dydz, cos β dS = dzdx, cosϒdS = dxdy. Then (9) becomes the following the 

integral for the flux: 

( ) ++=
SS

dxdyFdzdxFdydzF 321dS   . nF      (10) 

We can use this formula to evaluate surface integrals by converting them to double integrals over 

regions in the coordinate planes of the xyz-coordinate system. But we must carefully take into account 

the orientation of S (the choice of n), as described in Section 13.3.1. 
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The tangent vectors of all the curves on a surface S through a point P of S form a plane, called the 

tangent plane of S at P (refer to Figure 13.4). Exceptions are points where S has an edge or a cusp (like 

a cone), so that S cannot have a tangent plane at such a point.  Furthermore, a vector perpendicular 

to the tangent plane is called a normal vector of S at P. 

 

Figure 13.4 Tangent plane and normal vector 

Now since S can be given by r = r(u, v) in (2), the new idea is that we get a curve C on S by taking a pair 

of differentiable functions 

u = u(t),   v = v(t) 

whose derivatives u’ = du/dt and v’ = dv/dt are continuous. Then C has the position vector 

( ) ( )( )tvtut ,)(~ rr = . By differentiation and the use of the chain rule, we obtain a tangent vector of C on 

S 

  ''
~

)(~ v
v

u
udt

d
t




+




==

rrr
'r  

Hence the partial derivatives ru and rv at P are tangential to S at P. We assume that they are linearly 

independent, which geometrically means that the curves u = const and v= const on S intersect at P at 

a non-zero angle. Then ru and rv span the tangent plane of S at P. Hence their cross product gives a 

normal vector N of S at P. 

  0= vu rrN        (11) 

The corresponding unit normal vector n of S at P is (Figure 13.4)  

  vu

vu

rr
rr

N
N

n 


==
11

     (12) 

There is an alternative way of obtaining a unit normal vector of a surface S. If S is represented by 

expression g(x, y, z) = 0, then, from prior knowledge that gradient of g is always normal to g: 

g
g

 
1

grad
 grad

=n       (12*) 
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Example 13.1: 

Compute the flux of water through the parabolic cylinder 3z0  2,x0   ,: 2 = xyS  if the 

velocity vector is  xzzFv 6  , 6 ,3 2== , speed being measured in meters/sec. (Generally, F = ρv, but 

water has density ρ = 1 g/cm3= 1 ton/m3) 

 

Solution: 

Writing x = u  and z = v, we have 
22 uxy == . Hence a representation of S is  

   vS ,uu,       : 2=r    ( )3v0  2,u0   

By differentiation and by the definition of the cross product, 

     0     1,-   ,21    0,     ,00    2u,     ,1 urrN vu ===  

On S, writing simply F(S) for F[r(u,v)], we have F(S) = [ 3v2, 6, 6uv]. Hence F(S).N = 6uv2 – 6. By 

integration we thus get from (7) the flux 

( )   dvuvududvuvdS

uS

2

0

3

0

22

3

0

2

0

2 6366   .

=

  −=−=nF  

 ( )    sec/72361081241212 33

0

3

3

0

2 mvvdvv v =−=−=−= =  

Tangent Plane and Surface Normal 

If a surface S is given by (2) with continuous 
u

u



=

r
r and 

v
rv




=

r
 at every point of S, then S has, at 

every point P, a unique tangent plane passing through P and spanned by ru and rv and a unique normal 

whose direction depends continuously on the points of S. A normal vector is given by (11) and the 

corresponding unit normal vector by (12) (see Figure 4.4). 
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Or 72,000 liters/sec. Note that the y-component of F is positive (equal to 6), so that in figure above, 

the flow goes from left to right. 

 

Example 13.2: 

Compute the flux through the surface S, of the cylinder 𝑥2 + 𝑦2 = 16 in the first octant between z = 

0 and z = 5 if the velocity vector ∬ 𝑭
𝑆

. 𝑑𝑺 where 𝑭 = [𝑧, 𝑥, −3𝑦2𝑧]. 

 

Solution: 

Writing x = u and z = v, we have 𝑦 = √16 − 𝑢2 (from 𝑥2 + 𝑦2 = 16) 

𝒓(𝑢, 𝑣) = [𝑢, √16 − 𝑢2, 𝑣] 

𝒓𝒖 =
𝜕𝑟

𝜕𝑢
= [1, −

𝑢

√16−𝑢2
, 0]   

𝒓𝒗 =
𝜕𝑟

𝜕𝑣
= [0, 0,1]  ∴  𝑵 = 𝒓𝒗 × 𝒓𝒖 = |

𝒊 𝒋 𝒌
0 0 1

1 −
𝑢

√16−𝑢2
0

| = [
𝑢

√16−𝑢2
, 1,0] 

𝑭[𝒓(𝑢, 𝑣)] = [𝑣, 𝑢, −3(16 − 𝑢2)𝑣] 

𝑭[𝒓(𝑢, 𝑣)]. 𝑵 =
𝑢𝑣

√16 − 𝑢2
+ 𝑢 

∬ 𝑭. 𝑵𝑑𝑆 = ∫ ∫
𝑢𝑣

√16 − 𝑢2
+ 𝑢 𝑑𝑢𝑑𝑣

4

0

5

0
𝑆

 

∴ ∫ (𝑣 [∫
𝑢

√16 − 𝑢2
𝑑𝑢

4

0

] + ∫ 𝑢 𝑑𝑢

4

0

)

5

0

= ∫ [−
𝑣

2
∫

−2𝑢

√16 − 𝑢2
 𝑑𝑢 +  ∫ 𝑢 𝑑𝑢

4

0

4

0

]

5

0

𝑑𝑣 

= ∫ −𝑣 [√16 − 𝑢2]
0

4
5

0

𝑑𝑣 + ∫ [
𝑢2

2
]

0

4

𝑑𝑣

5

0

 

= ∫ 4𝑣
5

0
𝑑𝑣 + ∫ 8 𝑑𝑣

5

0
 = 90  
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Comment: In this example, the solution shown uses a basic parameterization of x = u, 𝑦 = √16 − 𝑢2, 

z = v, instead of the common cylindrical surface parameterization x = cos u, y = sin u, z = v as learned 

earlier. Try to repeat this example using the cylindrical surface parameterization (Hint: integrals of the 

same field and the same surface should result in the same answer). 

 

13.2.2 SURFACE INTEGRAL OF SCALAR FIELD  

When the field (function) to be integrated is a scalar field, the resulted integral is known as the surface 

integral of a scalar field, or simply the scalar surface integral. So, ∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆
𝑆

 has essentially the 

same concept as vector surface integral, but with a scalar field instead. Just as the vector surface 

integral, here, for a given surface S, suitable parameterization can be used: x = x(u, v), y = y(u, v), z = 

z(u, v), which gives again the position vector r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k. 

Just as the vector surface integral, the surface S can be specified by a scalar point function C(r)= c, 

where c is a constant. Curves may be drawn on that surface, and in particular if we fix the value of one 

of the two parameters u and v then we obtain two families of curves. On one, 𝐶𝑢(𝒓(𝑢, 𝑣0)) the value 

of u varies while v is fixed, and on the other, 𝐶𝑣(𝒓(𝑢0, 𝑣)), the values of v varies while u is fixed, as 

shown in Figure 13.5. Then as indicated on Figure 13.5, the vector element of area dS is given by: 

 

Figure 13.5 Parametric curves on a surface 

 

𝑑𝑺 =
𝜕𝒓

𝜕𝑢
𝑑𝑢 ×

𝜕𝒓

𝜕𝑣
𝑑𝑣 =

𝜕𝒓

𝜕𝑢
×

𝜕𝒓

𝜕𝑣
𝑑𝑢𝑑𝑣 

= (
𝜕𝑥

𝜕𝑢
,
𝜕𝑦

𝜕𝑢
,
𝜕𝑧

𝜕𝑢
) × (

𝜕𝑥

𝜕𝑣
,
𝜕𝑦

𝜕𝑣
,
𝜕𝑧

𝜕𝑣
) 𝑑𝑢 𝑑𝑣 =  (𝐽1𝒊 + 𝐽2𝒋 + 𝐽3𝒌)𝑑𝑢 𝑑𝑣 

where 

𝐽1 =
𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣
−

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑢
,    𝐽2 =

𝜕𝑧

𝜕𝑢

𝜕𝑥

𝜕𝑣
−

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑢
,           𝐽3 =

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑢
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However, instead of 𝑑𝑺 =
𝜕𝒓

𝜕𝑢
×

𝜕𝒓

𝜕𝑣
𝑑𝑢𝑑𝑣, for scalar surface integral, we have: 

𝑑𝑆 = |
𝜕𝒓

𝜕𝑢
×

𝜕𝒓

𝜕𝑣
| 𝑑𝑢𝑑𝑣, where the magnitude |

𝜕𝒓

𝜕𝑢
×

𝜕𝒓

𝜕𝑣
| = √(𝐽1

2 + 𝐽2
2 + 𝐽3

2)  

∬ 𝑓(𝑥, 𝑦, 𝑧). 𝑑𝑆 = ∬ 𝑓(𝑢, 𝑣)√(𝐽1
2 + 𝐽2

2 + 𝐽3
2)

𝐴𝑆
𝑑𝑢𝑑𝑣    (13) 

Once the entire integral can be described with only u and v, the integration can be carried out to 

obtain the value of the integral. 

Sometimes, a given surface can be very clearly described by z = z(x, y). A quick example is a vertical 

cone with 𝑧 = √𝑥2 + 𝑦2. In this situation, we can simply adopt x = u, y = v (and 𝑧 = √𝑢2 + 𝑣2). In fact, 

we can directly write the two parameters as x and y without introducing new symbols u and v. for 

example, if z = z(x, y) describes a surface as in Figure 13.6, then  

𝒓 = (𝑥, 𝑦, 𝑧(𝑥, 𝑦)) 

with x and y as independent variables. Then, the cross product becomes: 

𝜕𝒓

𝜕𝑢
×

𝜕𝒓

𝜕𝑣
=

𝜕𝒓

𝜕𝑥
×

𝜕𝒓

𝜕𝑦
= (−

𝜕𝒛

𝜕𝑥
) 𝒊 + (−

𝜕𝒛

𝜕𝑦
) 𝒋 + (1)𝒌  

𝐽1 = −
𝜕𝑧

𝜕𝑥
   𝐽2 = −

𝜕𝑧

𝜕𝑦
 𝐽3 = 1 

Since 𝑑𝑆 = |
𝜕𝒓

𝜕𝑢
×

𝜕𝒓

𝜕𝑣
| 𝑑𝑢𝑑𝑣 = |

𝜕𝒓

𝜕𝑥
×

𝜕𝒓

𝜕𝑦
| 𝑑𝑥𝑑𝑦, 

∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆 = ∬ 𝑓(𝑥, 𝑦, 𝑧(𝑥, 𝑦))√(1 + (
𝜕𝑧

𝜕𝑥
)

2
+ (

𝜕𝑧

𝜕𝑦
)

2
)

𝑆𝑆
𝑑𝑥𝑑𝑦   (14) 

 

 

Figure 13.6 A surface described by z = z(x, y) 
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Example 13.3: 

Evaluate the surface integral 

∬(𝑥 + 𝑦 + 𝑧)

𝑆

𝑑𝑆 

where S is the portion of the sphere 𝑥2 + 𝑦2+𝑧2 = 1 that lies in the first quadrant. 

 

(a) Surface S (b) quadrant of a circle in the (x, y) plane 

Solution: 

The surface S is illustrated in the above figure. Taking 

𝑧 = √1 − 𝑥2 − 𝑦2 

we have 

𝜕𝑧

𝜕𝑥
=

−𝑥

√1 − 𝑥2 − 𝑦2
 

𝜕𝑧

𝜕𝑦
=

−𝑦

√1 − 𝑥2 − 𝑦2
 

giving  √[1 + (
𝜕𝑧

𝜕𝑥
)

2
+ (

𝜕𝑧

𝜕𝑦
)

2
] = √

𝑥2+𝑦2+(1−𝑥2−𝑦2)

(1−𝑥2−𝑦2)
=

1

√1−𝑥2−𝑦2
 

∴ ∬(𝑥 + 𝑦 + 𝑧)𝑑𝑆 = ∬ [𝑥 + 𝑦 + √1 − 𝑥2 − 𝑦2]

𝐴𝑆

1

√1 − 𝑥2 − 𝑦2
𝑑𝑥𝑑𝑦 

where A is the quadrant of a circle in the (x, y) plane illustrated in Figure (b) (refer to the above Figure). 

Thus,  

∬(𝑥 + 𝑦 + 𝑧)

𝑆

𝑑𝑆 = ∫ ∫ [
𝑥

√1 − 𝑥2 − 𝑦2
+

𝑦

√1 − 𝑥2 − 𝑦2
+ 1]

√1−𝑥2

0

1

0

𝑑𝑦𝑑𝑥 
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                                 = ∫ [𝑥 𝑠𝑖𝑛−1 (
𝑦

√1 − 𝑥2
) − √1 − 𝑥2 − 𝑦2 + 𝑦]

0

√1−𝑥2

𝑑𝑥

1

0

     

= ∫ [
𝜋

2
𝑥 + 2√1 − 𝑥2] 𝑑𝑥

1

0

= [
𝜋

4
𝑥2 + 𝑥√1 − 𝑥2 + 𝑠𝑖𝑛−1𝑥]

0

1

=
3

4
𝜋 

An alternative approach to evaluating the surface integral in this example is to evaluate it directly over 

the surface of the sphere using spherical polar coordinates. As illustrated in the Figure (c), on the 

surface of a sphere of radius a we have,  

𝑥 = 𝑎 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙,    𝑦 = 𝑎𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙,   𝑧 = 𝑎 𝑐𝑜𝑠𝜃,       𝑑𝑆 = 𝑎2𝑠𝑖𝑛 𝜃𝑑𝜃𝑑𝜙  

 

(c) Surface element in spherical polar coordinates 

 

The radius a = 1, so that 

∬(𝑥 + 𝑦 + 𝑧)𝑑𝑆 = ∫ ∫ (𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

𝜋/2

0

𝜋/2

0𝑆

 

= ∫ [
1

4
𝜋𝑐𝑜𝑠𝜙 +

1

4
𝜋𝑠𝑖𝑛𝜙 +

1

2
]

𝜋/2

0

𝑑𝜙 =
3

4
𝜋 

 

Example 13.4: 

Calculate the surface integral ∬ (𝑥 + 𝑦 + 𝑧)
𝑆

 𝑑𝑆 where S is the portion of the plane 𝑥 + 2𝑦 + 4𝑧 =

4 lying in the first octant (x  0, y  0, z  0) 

Solution: 

Rewrite linear equation: 

𝑧 =
4 − 𝑥 − 2𝑦

4
= 1 −

𝑥

4
−

𝑦

2
 



25 
 

𝜕𝑧

𝜕𝑥
= −

1

4
        

𝜕𝑧

𝜕𝑦
= −

1

2
 

∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆 = ∬ 𝑓(𝑥, 𝑦, 𝑧(𝑥, 𝑦))√1 + (
𝜕𝑧

𝜕𝑥
)

2

+ (
𝜕𝑧

𝜕𝑦
)

2

𝐴𝑆

𝑑𝑥𝑑𝑦 

∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆 = ∬ (𝑥 + 𝑦 + 1 −
𝑥

4
−

𝑦

2
) √1 + (−

1

4
)

2

+ (−
1

2
)

2

𝐴𝑆

𝑑𝑥𝑑𝑦 

= ∬ (
3𝑥

4
+

𝑦

2
+ 1)

√21

4
𝑑𝑥𝑑𝑦 

=
√21

4
∫ ∫ (

3𝑥

4
+

𝑦

2
+ 1)

4−2𝑦

0

2

0

𝑑𝑥𝑑𝑦 =
√21

16
∫ (

3𝑥2

2
+ 2𝑦𝑥 + 4𝑥)

0

4−2𝑦

𝑑𝑦

2

0

 

=
√21

32
∫ (3(16 − 16𝑦 + 4𝑦2) + 16𝑦 − 8𝑦2 + 32 − 16𝑦)

2

0

𝑑𝑦 =
√21

32
∫(80 − 48𝑦 + 4𝑦2)

2

0

𝑑𝑦 

=
√21

8
∫ 20 − 12𝑦 + 𝑦2

2

0

 𝑑𝑦 =
√21

8
[20𝑦 − 6𝑦2 +

𝑦3

3
]

0

2

=
√21

8
(40 − 24 +

8

3
) =

7√21

3
 

 

 

 

 

 

 

 

 

Scalar surface integral can also be used to find the area of a given surface S. This is when f(x, y, z) = 1 

and the integral ∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆 =
𝑆 ∬ 𝑑𝑆

𝑆
 simply ‘sums-up’ all the elements’ small area to give the 

area of the entire surface S. The following examples demonstrate this application. 

 

Example 13.5: 

Find the area of the surface 22 yxz += over the region bounded by 122 =+ yx  
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Solution: 

z = f(x, y) 

( )  











+












+=

*

22

1
R

dxdy
y

f

x

f
SA  

So we now find 
x

f




and

y

f




and determine 

22

1 











+












+

y

f

x

f
 which is 

( ) ( ) 2/122, yxyxf +=    ( )
22

2/122 2
2

1

yx

x
xyx

x

f

+
=+=






−
 

( )
22

2/122 2
2

1

yx

y
yyx

y

f

+
=+=



 −
 

 211
22

2222

=
+

+
+=












+












+

yx

yx

y

f

x

f
 

 ( )  =











+












+=

*

22

1
R

dxdy
y

f

x

f
SA 

R

dxdy2  

But R is bounded by 122 =+ yx , i.e. a circle, centre the origin and radius 1. =area  

( ) 22 == 
R

dxdySA  

 

Example 13.6: 

Find the area of the surface S of the paraboloid 22 yxz += cut off by the cone 222 yxz +=  
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Solution: 

We can find the point of intersection A by considering the y-z plane i.e. x = 0. Then, coordinates of A 

are A(2, 4). 

The projection of the surface S on the x-y plane is  

422 =+ yx  

 

 ( )  











+












+=

*

22

1
R

dxdy
y

f

x

f
SA  

For this we use the equation of the surface S. The 

information from the projection R on the x-y plane will 

later provide the limits of the two stages of integration. 

 

For the time being, then  

( )  ++=
*

22 441
R

dxdyyxSA  

using Cartesian coordinates, we could integrate with respect to 

y from y = 0 to 
24 xy −= and then with respect to x from x  

= 0 to x = 2. Finally we should multiply by four to cover all four 

quadrants 

i.e. ( ) dydxyxSA
x

x

xy

y
 
=

=

−=

=

++=

2

0

4

0

22

2

4414  

but how do we carry out the actual integration? It becomes a lot easier if we use polar coordinates. 

The same integral in polar coordinates is  

( ) 




rdrdrSA
r

r
 
=

=

=

=

+=

2

0

2

0

241  

( ) ( ) ( ) 




drrdrdrSA
r

r

2

0

2

0

2/32

2/12

0

2

0

2 41
12

1
41   





+=+=

=

=

=

=

 

     18.367577.5117
12

1 2
0

2

0

2/3 ==−= 




d  

 

 



28 
 

13.3 SOME PROPERTIES OF SURFACE INTEGRAL  

In this section, we discuss some properties of surface integral that are relevant to solving the integral. 

In particular, we look into these two matters: (i) the orientation of a given surface, and (ii) the 

continuity of a surface. 

 

13.3.1 ORIENTATION OF SURFACES  

From (8) and (8*), we see that the value of the integral depends on the choice of the unit normal 

vector n. We express this by saying that such an integral is an integral over an oriented surface S, that 

is, over a surface S on which we have chosen one of the two possible unit normal vectors in a 

continuous fashion. 

If we change the orientation of S, as illustrated by Figure 13.7, this means that we replace n with –n. 

Then each component of n is multiplied by -1. This gives a negative to the original value of the 

surface integral. 

 

Figure 13.7 Orientation of a Surface 

 

 

 

 

 

Example 13.7: 

From Example 13.1, for the surface S represented by 𝒓 = [𝑢, 𝑢2, 𝑣],  0 ≤ u ≤ 2, 0 ≤ v ≤ 3. If we 

consider the normal vector along the opposite direction: 

𝑵 = 𝒓𝑣 × 𝒓𝑢 = [0,0,1] × [1,2𝑢, 0] = [−2𝑢, 1,0]  

𝑭. 𝑵 = [3𝑣2, 6,6𝑢𝑣]. [−2𝑢, 1,0] = 6 − 6𝑢𝑣2  

 

Change of Orientation in a Surface Integral 

The replacement of n by –n (hence of N by –N) corresponds to the multiplication of the integral in (8) 

by -1 
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Note that this integrand is now the negative of that in Example 13.1. Consequently, it is obvious that 

the integration also gives the negative of the value obtained in Example 13.1: 

∬ 𝑭. 𝑵 𝑑𝑢𝑑𝑣
𝑠

= ∫ ∫ (6 − 6𝑢𝑣2)𝑑𝑢𝑑𝑣
2

0

3

0
= ∫ (12 − 12𝑣2)𝑑𝑣

3

0
= −72  

 

However, the orientation of a surface (the required direction of the unit normal vector) does not affect 

a scalar surface integral. This is because ∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆
𝑠

= ∬ 𝑓(𝑢, 𝑣) |
𝜕𝒓

𝜕𝑢
×

𝜕𝒓

𝜕𝑣
| 𝑑𝑢𝑑𝑣

𝑠
, so even 

though 𝒓𝑢 × 𝒓𝑣 = −(𝒓𝑣 × 𝒓𝑢), the magnitudes are the same. In fact, we do not speak of orientation 

of the given surface when solving a scalar surface integral. Therefore, this is also sometimes known as 

surface integral without regard to orientation. 

 

13.3.2 CONTINUITY OF SURFACES  

This property is similar to that of a line integral. Its concept can be conveniently expressed by: 

∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆 = ∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆1 + ∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆2 for ease of understanding. This means, when the 

integration is to be carried out over a surface S which is a composite of two (or more) surfaces, e.g. S1 

and S2, the surface integral can be obtained by summing all the component surface integrals. This is 

true as long as the piecewise surface is continuous. 

This property is usually applicable in situations involving closed surfaces, for example, as illustrated 

below: 

Example 13.8: 

Evaluate the surface integral ∬ (𝑧2)
𝑆

 𝑑𝑆, where S is the total area of the cone √𝑥2 + 𝑦2 ≤ 𝑧 ≤ 2 

 

Solution: 

S1: surface of the cone 

S2: base (cover) of the cone 

𝑆1 = ∬ 𝑧2𝑑𝑆1 = √2

𝑆1

∬ 𝑥2 + 𝑦2 𝑑𝑥𝑑𝑦 
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Change to polar coordinate 

= √2 ∫ ∫ 𝑟2𝑟𝑑𝑟𝑑𝜃 = 8√2

2

0

2𝜋

0

𝜋 

S2 – base of the cone at z = 2 

𝑆2 = ∬ 22𝑑𝑆2 = 4

𝑆2

∬ 𝑑𝑆2

𝑆2

 

= 4 ∬ 𝑑𝑆2

𝑆2

= 4(4𝜋) = 16𝜋 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 = 𝑆1 + 𝑆2 = 8√2𝜋 + 16𝜋 

 

As a final remark, note that this property is applicable to both scalar surface integrals and vector 

surface integrals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∬ 𝑑𝑆2= area of the base =r2=(22)=4 




