STOKES” THEOREM

WEEK 14: STOKES' THEOREM

14.1 INTRODUCTION

From previous topic, we have learnt that double integrals over a region in the plane can be
transformed into line integrals over the boundary curve of the region and conversely. We shall now
see that more generally, surface integrals over a surface S with boundary curve C can be transformed
into line integrals over C and conversely.

Stokes’ theorem is the ‘curl analogue’ of the divergence theorem and related the integral of curl of a
vector field over an open surface S to the line integral of the vector field around the perimeter C
bounding the surface.

If Fis a vector filed existing over surface S and around its boundary, closed curve c, then

jcu rl F.dS= § F.dr

This means that we can express a surface integral in terms of a line integral round the boundary curve.

Example 14.1:

A hemisphere S is defined by x> +y>+2° =4 (22 0). A vector field F=2yi-xj+xzk exists over the
surface and around its boundary c.

Verify Stokes’ theorem, that _[cu rl F.dS = §F.dr
Six?+y?+2z2-4=0

F =2yi—xj + xzk
cis the circle x? + y? = 4

(@) $.F.dr = [ (2yi — xj + xzk). (idx + jdy + kdz)
= j(Zydx — xdy + xzdz)
Converting to polar coordinates
X= 2cosb; y= 2sin6; z=0

dx=-2sinB d6; dy=2cos6d6b; limits 6=0 to 2m
Making the substitution and completing the integral

2m

fF. dr = (4 sinB[—2sin6dB] — 2cos62cos0d0)
c 0
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- —4T(25in26 +cos6) do
0

27 2z
=-4[(1+sin’0) do = -2 [(3-cos20)d0 (1)
0 0
. 2r
:_2[30_sm2¢9} _ 19g
0

(b) Now we determine Icur/ F.dS

s

J-cur/ F.dS=J-cur/ F.ﬁ ds

s

ik
curlf=l2 9 91 i0-0)-j(z—0)+k(-1-2)=—zj— 3k
ox oy o0z

2y —Xx Xz
e VS 2xi+2yj+2zk xi+yj+zk
w VS| \/4x2 +4y° +47° 2

No
Then J.cur/ F.n d5=_f(—zj—3k),(X'+y2Lijds

S

1
—E!(—yz—3z) ds
Expressing this in spherical polar coordinates and integrating, because
x =2sinfcos¢; y=2sinésing; z=2cosf#; dS=4sincdd&d¢

.'.Icurl F.ﬁ dS:%H(—Zsin@sinqﬁcos@—6cos€)45im9d0d¢
277/2

=—4j J.(Zsinz9cos«95in¢+3sin6’cos€)ﬂ€d¢
00
27| .3 . .2 /2

=_4J 2sin 6’sm¢+35m 0 df 2)
° 3 2

0

= —4T(Esin¢+§) db=-127
3 2

So we have from our two results (1) and (2)

Icurl F.dS =§F.dr

s
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Example 14.2:

Verify the Stokes’ Theorem for F = (2x — y)i — yz?j — y?zk, where S is the upper half of the sphere
x% 4+ y? + z%2 = 1 and Cis its boundary.

Hemispherical surface and boundary for Example 14.2
Solution:

The surface and boundary involved are illustrated in the above figure. We are required to show that

fF.dr=ﬂ‘curlF.dS
S

c
Since C is a circle of unit radius in the (x,y) plane, to evaluate 950 F.dr, we take
X = cos ¢, y =sing,
so that
r = cos @i + singj
giving dr = —sin¢de i + cospde j
Also, on the boundary C, z=0, so that
F = 2x —y)i=(2cos¢p — sing)i

Thus,

2m
3€ F.dr = f (2 cos¢p — sing)i. (—sing i + cos¢ j)de¢
0

[

2m 21
= f (—2sing cos¢ + sin?¢p)de = f [—sinZd) +%(1 —cos2¢)|dep =
0 0

i J

d 0

curl F = x @
2x—y —yz? -—
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The unit outward-drawn normal at a point (x,y,z) on the hemisphere is given by (xi+yj+zk) since x? +
y? +z? = 1. Thus

ff curl F.dS = f k. (xi + yj + zk)dS

2w /2

ff zdS = f f cos6 sinf dfd¢ = Zn[ sin 9]

Hence § F.dr = [[. curl F.dS and Stokes’ Theorem is verified.

14.2 DIRECTION OF UNIT NORMAL VECTORS TO A SURFACES

When we were dealing with the divergence theorem, the normal vectors were drawn in a direction
outward from the enclosed region. With an open surface as we now have, there is in fact no inward
or outward direction. With any general surface, a normal vector can be drawn in either of two opposite
directions. To avoid confusion, a convention must therefore be agreed upon and the established rule
is as follows.

n
c

A unit normal nis drawn perpendicular to the surface S at any point in the direction indicated by
applying the right-handed screw sense to the direction of integration round the boundary c. This is
identical to right-hand grip rule. Having noted that point, we can now deal with the next example.

=>
=

Example 14.3:

A surface consists of five sections formed by the planes x=0, x=1, y=0, y=3, z=2 in the first octant. If
the vector field F = yi+z%j+xyk exists over the surface and around its boundary, verify Stokes’ theorem.

z n=k
2
lisH y
- n=-i
TR L s A
il -t
=] s c33 4
x/1 Ca
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If we progress round the boundary along c;, c;, ¢3 csin an anti-clockwise manner, the normal to the
surfaces will be as shown.

We have to verify that Icurl F.dS= §F.dr

(a) We will start off by finding §F.dr

(1) Alongci:  y=0; z=0; dy=0; dz=0
~.[Fdr=[(0+0+0)=0
cl

(2) Alongca:  x=1; z=0; dx=0; dz=0
~[Fdr=[(0+0+0)=0
c2

(3) Alongcs:  y=3; z=0; dy=0; dz=0

0
». [F.dr=[(3dx+0+0)=[3x} =-3
c3 1
(4) Alongcs: x=0; z=0; dx=0; dz=0
~. [Fdr=[(0+0+0)=0
c3
§F.dr =0+0-3+0=-3

§ F.dr=-3

(b) Now we have to find j curl F.dS

First we need an expression for curl F.

F=yi+2’j+xyk

i j k

curl F=V xF= o 9 9
ox 0Oy o0z

y 22 xy

=i(x—22)—jly-0)+k(0-1)=(x—22)i-yj—k

Then for each section, we obtain J-CUf/ F.dS zj-cur/ F.n dS

s

(1) S:(top) n=k
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[eunl F.nds = [[(x—22)i- yj-k]. (k) ds
S

Sy

j(—l)dS =—(area of S,)=-3

Then, likewise

(2) S (right-hand end): n=j

. [ourl F.ndS= [[(x—22)i- yj-k].(j) d

S, S

= [(y) ds

S,
But y=3 for this section
. curl F.nds= [(-3)ds=(-3)2)=-6
s, s,
(3) S; (left-hand end): n-— -j

[eurl F.nds = [[(x—22)i- yj-k].(-)) ds

S S

= [(y) ds

S3

But y=0 over S3

- [ cur F.ndS=0

5

(4) S4 (front): ﬁ:i

. [eurl F.nds= [[(x-22)i-yj-k].() dS

S S,

= I(x—Zz) ds

Sa

but x=1 over S,

J.cur/ F. rAldS = j.j(l—Zz)dzdy = j[z -z :Edy
00 0

S,

S (R PV )

(5) Ss (back): n=—iwith x=0 over Ss
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Similar working to the above gives _[curl F.ndS=12
SS

Finally, collecting the five results together gives

*. [eurt FENdS=-3-6+0-6+12=-3

Sa
So, referring back to our result for section (a) we see that

j curl F.dS= § F.dr

Example 14.4:

A surface S consists of that part of the cylinder x* + y* =9 between z=0 and z=4 for y>0 and the two

semicircles of radius 3 in the planes z=0 and z=4. If F = zi+xyj+xzk, evaluate J-curl F.dS over the

surface.

The surface S consists of three sections

~ (a) The curved surface of the cylinder
!‘ (b) The top and bottom semicircles
|
l We could therefore evaluate
|
| -
- o~ h
= curl F.dS
l\ L H 3 y .!
X
fi=-k

Over each of these separately.

However, we know by Stokes’ theorem that

F =zi+ xyj+ xzk

§F. dr= :f(zi + xyj+ xzk).(idx + jdy +kdz)

c

= §(zdx +xydy + xzdz )

Now we can work through this easily enough, taking ci, ¢, ¢3, ca in turn, and summing the results which
gives

Icur/ F.dS= §F.dr = §(zdx +xydy + xzdz )

s

(1) Ci: y=0; z=0; dy=0; dz=0
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[F.dr=[(0+0+0)=0

G G

(2) Ca: x=-3; y=0; dx=0; dy=0

_3227
[F. dr=J‘(O+O—3zdz):{ 5 }:—24
0

) G

(3) Cs:y=-; z=4; dy=0; dz=0

[F. dr=[(adx+0+0)= j4dx=24
¢ s -3

(4) Cu: x=3; y=0; dx=0; dy=0

322
[F. dr=j(o+o+3zdz)={7} =-24

Cy Cq

There is an alternative way of solving this example. We can consider a fictitious surface enclosed by
the rectangular curve Ci-C>-Cs-C4 (the vertical rectangular surface formed by the closed curve). This
fictitious surface shares the same closed curve as the hollow half-cylinder surface. Therefore, finding
fs curl F.dS of this fictitious surface bounded by y =0, -3 < x < 3, 0 £z £ 4, which is more straight-
forward than finding the original surface integral, will also give the same answer:

i j k
=2 2 9= (1-yp)j
curl F = 5% 5y 2 (1-2)j+yk
zZ Xy xz

For this vertical rectangular surface, unit normal vector, n =j.
[ curlF.dS= [ curlF.ndS
S S
= [2, ;1 — 2)dzdx
2 4'
= f_33 [z — Z—] dx
2l
3
=[,—4dx=-24
This alternative solution demonstrates an interesting property related to Stokes’ theorem: if two or

more surfaces share the same closed curve, their surface integrals (of the Stokes’ theorem) give the
same value.
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14.3 GREEN’S THEOREM (CIRCULATION FORM)

Green’s theorem enables an integral over a plane area to be expressed in terms of a line integral round
its boundary curve. Let P and Q be two functions of x and y that are, along with their first partial
derivatives, finite and continuous inside and on the boundary c of a region R in the x-y plane.

If the first partial derivatives are continuous within the region
and on the boundary, then Green’s theorem states that
[o
ol P oP 0Q
— —— dxdy =—¢(Pdx +Qd
{ I Lé‘y GXJd § ( V)

That is, a double integral over the plane region R can be transformed into a line integral over the
boundary c of the region — and the action is reversible.

Y

If P and Q are two single-valued functions of x and y, continuous

@ dS = dxdy over a plane surface S, and c is its boundary curve, then
0 oP
< § (Pdx +Qdy )= ” (—Q - —jdxdy

ol 8y

X
where the line integral is taken round c in an anticlockwise manner. In vector terms, this becomes:
S is a two-dimensional space enclosed by a simple closed curve c.

RHS: dS =dxdy

dS =n ds=k dxdy

|f F:Pi-l-Qj Where P=P(X,y) and Q=Q(X/y)/ then

i ik
Cur[F:i i g:(O—a—Qj—j(O—a—Pj ka_Q_a_P
ox oy oz 0z 0z ox oy
P Q O
But in the x-y plane, — a_cdop =0. url F= kﬁ—Q—ﬁ—P
oz oz ox oy

So Icur/ F.dS=Icur/ F.ndS and in the x-y plane, rA1:k

_[curleS jk[a—a—a—Pj()d ”[___J
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oQ oP
‘[CUN F.dS= J;J [a - gjdxdy

Now by Stokes’ theorem J‘ curl F.AS = § F.dr
c

S

LHS: in this case §F.dr = §(Pi+ Qj).(idx + jdy +kdz)
= §(de +Qdy)

.-.§F.dr=§de +Qdy

Therefore from (1) and (2)

(1)

(2)

Stokes’ theorem Icur/F.dS=§F. dr in two dimensions becomes Green’s theorem
S c

”(Z—f - Z—dexdy = § Pdx +Qdy
N c

Example 14.5:

Verify Green’s theorem for the integral iﬂ(xz +y’ )dx + (x+2y)dy] taken round the boundary curve

c defined by
y=0
x> +y’ =4
x=0 0<y<2
oQ oP
Green’s theorem: — ——|dxdy=¢(P dx+Qd
jsj[ax ayj L Y)

In this case (x2 +y2)dx+(x+2y)dy =Pdx+Qdy

S P=x’+y® and Q=x+2y
We now take ¢y, c;, c3in turn.
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(1) c1: y=0; dy=0

2 X3 2 8
I(P dX+Qdy)=J‘X2dx:{—} =2
[ 0 0

(2) e X ryl=4 cyt=a-x cy=(a-x)"
X+2y:X+2(4_X2)1/2

_1 2Y1/2 L
dy—5(4—x ) (—Zx)dx_mdx

j(P dx +Qdy)= J‘{4+(x+2\/4 X I\/_ﬂ dx
b 4—x
2
4—-2x— dx
Mo
Puttingx=2sin® +4—x> =2cosf dx=2cosdd
Limits: x=2 9:%; x=0,, 8=0
‘ 4sin* @
I(de+Qdy) _[ 4—4sin0 - 2cosGd @
: N 2cosd
. 0
=4 Zsine—sinzﬁ—l(ﬁ—smzej
2 2 /2
=4{—(2—1—£ﬂ=n—4
4
Finally
(3) c3: x=0; dx=0
0
.'.'[(de+Qdy)='[2y dy:[yZ:E =—4
C3 2
Therefore, collecting our three partial results
8 16
§(P dx+Qdy)==+r-4-4=7-=>
g 3 3
That is one part done. Now we have to evaluate ”(—Q—a—Pj dx dy
ox oy
p
P=x"+y 8— 2y
oy
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Q=x+2y .. —=1
Y OX

”(Z—S—Z—Cj dxdy = J’J.(l—Zy)dy dx

It will be more convenient to work in polar coordinates, so we make the substitutions

x=rcos@; y=rsing; dS=dxdy =rdrdd

_U(Z—f—Z—dexdy=ﬂ.fj.;(1—2rsim9) rdrdd

/2] 2

3 2
= r——stiné? do
2 3 .

/21 /2
= I Z—Esine 0= 29+Ecos¢9 =7r—E
- 3 3 3

0

So we have established once again that

§(de+Qdy)=ﬁ(2—f—Z—Cj dx dy

c
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