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STOKES’ THEOREM 
WEEK 14: STOKES ’  THEOREM 

14.1 INTRODUCTION 

From previous topic, we have learnt that double integrals over a region in the plane can be 

transformed into line integrals over the boundary curve of the region and conversely. We shall now 

see that more generally, surface integrals over a surface S with boundary curve C can be transformed 

into line integrals over C and conversely.  

Stokes’ theorem is the ‘curl analogue’ of the divergence theorem and related the integral of curl of a 

vector field over an open surface S to the line integral of the vector field around the perimeter C 

bounding the surface. 

If F is a vector filed existing over surface S and around its boundary, closed curve c, then 

 =
c

dd rFSF ..  curl
s

 

This means that we can express a surface integral in terms of a line integral round the boundary curve.  

Example 14.1: 

A hemisphere S is defined by 4222 =++ zyx (z ≥ 0). A vector field F=2yi-xj+xzk exists over the 

surface and around its boundary c.  

Verify Stokes’ theorem, that  =
c

dd rFSF ..  curl
s

 

𝑆: 𝑥2 + 𝑦2 + 𝑧2 − 4 = 0 

𝐹 = 2𝑦𝒊 − 𝑥𝒋 + 𝑥𝑧𝒌 

c is the circle x2 + 𝑦2 = 4 

 

(a) ∮ 𝐹. 𝑑𝑟
𝑐

= ∫ (2𝑦𝒊 − 𝑥𝒋 + 𝑥𝑧𝒌). (𝒊𝑑𝑥 + 𝒋𝑑𝑦 + 𝒌𝑑𝑧)
𝑐

 

             ( ) +−=
c

xzdzxdyydx2  

Converting to polar coordinates 

x= 2cosθ;   y= 2sinθ;   z=0 

dx= -2sinθ dθ;  dy=2cosθdθ;  limits θ= 0 to 2π 

Making the substitution and completing the integral 

 

∮𝑭. 𝒅𝒓
𝒄

= ∫ (𝟒 𝒔𝒊𝒏𝜽[−𝟐𝒔𝒊𝒏𝜽𝒅𝜽] − 𝟐𝒄𝒐𝒔𝜽𝟐𝒄𝒐𝒔𝜽𝒅𝜽)
𝟐𝝅

𝟎
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(b) Now we determine 
s

curl SF.d   

dScurlcurl
s




=     .   .d   n FSF  

 

( ) ( ) ( ) kjkji

j

321000

2

F −−=−−+−−−=

−











= zz

xzxy
zyx
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Now 
2444

222
222

kjikji zyx

zyx

zyx

S

S
n

++
=

++

++
=




=

 

Then ( ) dS
zyx

zcurl
ss








 ++
−−= 



2
.3dS  . 

kji
kjnF  

       ( ) dSzyz
s

  3
2

1
 −−=  

Expressing this in spherical polar coordinates and integrating, because 

 

 dd4sindS        ;2cosz       ;sin2siny          ;cossin2 ====x  

 

( )  ddcurl
ss

sin4cos6cos2sinsin2
2

1
dS.    −−=



  nF  

( )














-12dφ   
2

3
sin

3

2
4

2

sin3

3

sinsin2
4

cossin3sincossin24

2

0

2/

0

2

0

23

2

0

2/

0

2

=







+−=









+−=

+−=





 

d

dd

   (2) 

So we have from our two results (1) and (2) 

 =
cs

curl rSF d ..d  F  
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Example 14.2: 

Verify the Stokes’ Theorem for 𝐹 = (2𝑥 − 𝑦)𝒊̃ − 𝑦𝑧2𝒋̃ − 𝑦2𝑧𝒌̃, where S is the upper half of the sphere 

𝑥2 + 𝑦2 + 𝑧2 = 1 and C is its boundary. 

Hemispherical surface and boundary for Example 14.2 

Solution: 

The surface and boundary involved are illustrated in the above figure. We are required to show that  

∮ 𝑭. 𝑑𝑟 = ∬ 𝑐𝑢𝑟𝑙 𝑭. 𝑑𝑺

𝑆𝑐

 

Since C is a circle of unit radius in the (x,y) plane, to evaluate ∮ 𝑭. 𝑑𝑟
𝑐

, we take 

𝑥 = cos 𝜙,   𝑦 = sin 𝜙,  

so that 

𝑟 = cos 𝜙𝒊 + 𝑠𝑖𝑛𝜙𝒋 

giving     𝑑𝑟 = −𝑠𝑖𝑛𝜙𝑑𝜙 𝑖 + 𝑐𝑜𝑠𝜙𝑑𝜙 𝑗 

Also, on the boundary C, z=0, so that 

 𝐹 = (2𝑥 − 𝑦)𝒊 = (2 𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙)𝒊 

Thus, 

∮ 𝑭. 𝑑𝑟 = ∫ (2 𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙)𝒊 .  (−𝑠𝑖𝑛𝜙 𝒊 + 𝑐𝑜𝑠𝜙 𝒋)𝑑𝜙
2𝜋

0
𝑐

 

= ∫ (−2𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛2𝜙)𝑑𝜙 = ∫ [−𝑠𝑖𝑛2𝜙 +
1

2
(1 − 𝑐𝑜𝑠2𝜙)]

2𝜋

0

2𝜋

0

𝑑𝜙 = 𝜋 

𝑐𝑢𝑟𝑙 𝐹 = ||

𝒊 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

2𝑥 − 𝑦 −𝑦𝑧2 −𝑦2𝑧

|| = 𝒌 
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The unit outward-drawn normal at a point (x,y,z) on the hemisphere is given by (xi+yj+zk) since 𝑥2 +

𝑦2 + 𝑧2 = 1. Thus 

∬ 𝑐𝑢𝑟𝑙 𝑭. 𝑑𝑺 = ∬ 𝒌. (𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌)𝑑𝑆

𝑆𝑆

= ∬ 𝑧 𝑑𝑆 = ∫ ∫ 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃𝑑𝜙 = 2𝜋 [
1

2
𝑠𝑖𝑛2𝜃]

0

𝜋/2

= 𝜋

𝜋/2

0

2𝜋

0𝑆

 

Hence ∮ 𝑭. 𝑑𝑟 = ∬ 𝑐𝑢𝑟𝑙 𝑭. 𝑑𝑺
𝑆𝑐

 and Stokes’ Theorem is verified. 

 

14.2 DIRECTION OF UNIT NORMAL VECTORS TO A SURFACES  

When we were dealing with the divergence theorem, the normal vectors were drawn in a direction 

outward from the enclosed region. With an open surface as we now have, there is in fact no inward 

or outward direction. With any general surface, a normal vector can be drawn in either of two opposite 

directions. To avoid confusion, a convention must therefore be agreed upon and the established rule 

is as follows. 

 

A unit normal 


n is drawn perpendicular to the surface S at any point in the direction indicated by 

applying the right-handed screw sense to the direction of integration round the boundary c. This is 

identical to right-hand grip rule. Having noted that point, we can now deal with the next example. 

 

Example 14.3: 

A surface consists of five sections formed by the planes x=0, x=1, y=0, y=3, z=2 in the first octant. If 

the vector field F = yi+z2j+xyk exists over the surface and around its boundary, verify Stokes’ theorem. 
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If we progress round the boundary along c1, c2, c3, c4 in an anti-clockwise manner, the normal to the 

surfaces will be as shown. 

We have to verify that  =
c

SF rF dcurl
s

..d   

(a) We will start off by finding 
c

drF.  

(1) Along c1:  y=0; z=0; dy=0; dz=0 

( ) 0000.
1

=++= 
c

drF  

 

(2) Along c2: x=1; z=0; dx=0; dz=0 

 ( ) 0000.
2

=++= 
c

drF  

 

(3) Along c3: y=3; z=0; dy=0; dz=0 

( )   33003. 0
1

0

13

−==++=  xdxd
c

rF  

 

(4) Along c4: x=0; z=0; dx=0; dz=0 

( )

-3=

−=+−+=

=++=







rF

rF

rF

c

d

d

d

c

c

.

30300.

0000.
3

 

 

(b) Now we have to find Sdcurl
s

.   F  

First we need an expression for curl F. 

 

kjiF xyzy ++= 2
 

xyzy
zy

curl

2

x
   












==

kji

FF  

 kjikji −−−=−+−−−= yzxyzx )2()10()0()2(  

Then for each section, we obtain dScurlcurl
s




=     .   .d   n FSF  

(1) S1 (top) kn=

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  dS  )( . )2(dS  .  

11

kk-jin  −−=


SS

yzxcurl F  

  3)Sof   ()1(
1

1 −=−=−
S

areadS  

Then, likewise  

 

(2) S2 (right-hand end): jn=


 

   dS  )( . )2(dS  .  

22

jk-jin  −−=


SS

yzxcurl F  

            dSy
S

  )(
2

 −=  

But y=3 for this section 

( ) ( )( ) 623-dS 3dS  .  
22

−==−= 


SS

curl nF  

(3) S3  (left-hand end): jn −=


 

  dS  )( . )2(dS  .  

33

jk-jin −−−= 


SS

yzxcurl F  

             dSy
S

  )(
3

=  

But y=0 over S3 

0dS  .  
2

=


S

curl nF  

(4) S4  (front): in=


 

  dS  )( . )2(dS  .  

44

ik-jin  −−=


SS

yzxcurl F  

dSzx
S

  )2(
4

 −=  

but x=1 over S4 

  dyzzdzdyzcurl
S

   −=−=
 3

0

2

0

3

0

2

0
2)21(dS  .  

4

nF  

( )   62  2 3
0

3

0

−=−=−=  ydy  

(5) S5  (back): in −=


with x=0 over S5 
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Similar working to the above gives 12dS  . 
5

=


S

curl nF  

Finally, collecting the five results together gives 

3126063dS  .  
4

−=+−+−−= 


S

curl nF  

So, referring back to our result for section (a) we see that  

 =
c

SF rF dcurl
s

..d   

Example 14.4: 

A surface S consists of that part of the cylinder 922 =+ yx between z=0 and z=4 for y≥0 and the two 

semicircles of radius 3 in the planes z=0 and z=4. If kjiF xzxyz ++= , evaluate SF.d  
s

curl  over the 

surface. 

 

 

 

 

 

 

 

However, we know by Stokes’ theorem that  

kjiF xzxyz ++=  

( ) ( ) ++++=
cc

dzdydxxzxyzF kjikji .dr  .  

 ( ) ++=
c

xzdzxydyzdx  

Now we can work through this easily enough, taking c1, c2, c3, c4 in turn, and summing the results which 

gives 

( ) ++==
cs

xzdzxydyzdxdcurl
c

SF rF..d   

(1) C1: y=0; z=0; dy=0; dz=0 

 

The surface S consists of three sections  

(a)  The curved surface of the cylinder 

(b) The top and bottom semicircles 

We could therefore evaluate 

SF.d  
s

curl  

Over each of these separately.  
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( ) 0000  .
11

=++= 
cc

drF  

 

(2) C2: x=-3; y=0; dx=0; dy=0 

 

( ) 24
2

3
300  .

4

0

2

22

−=






−
=−+= 

z
zdzd

cc

rF  

 

(3) C3: y=-; z=4; dy=0; dz=0 

 

( ) 244004  .
3

333

==++= 
−

dxdxd
cc

rF  

 

(4) C4: x=3; y=0; dx=0; dy=0 

( ) 24
2

3
300  .

0

4

2

44

−=







=++= 

z
zdzd

cc

rF  

 

There is an alternative way of solving this example. We can consider a fictitious surface enclosed by 

the rectangular curve C1-C2-C3-C4 (the vertical rectangular surface formed by the closed curve). This 

fictitious surface shares the same closed curve as the hollow half-cylinder surface. Therefore, finding 

∫ 𝑐𝑢𝑟𝑙 𝑭. 𝑑𝑺
𝑠

 of this fictitious surface bounded by y = 0, -3 ≤ x ≤ 3, 0 ≤ z ≤ 4, which is more straight-

forward than finding the original surface integral, will also give the same answer: 

𝑐𝑢𝑟𝑙 𝑭 = |

𝒊 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑧 𝑥𝑦 𝑥𝑧

| = (1 − 𝑧)𝒋 + 𝑦𝒌  

For this vertical rectangular surface, unit normal vector, n = j. 

∫ 𝑐𝑢𝑟𝑙 𝑭. 𝑑𝑺
𝑠

= ∫ 𝑐𝑢𝑟𝑙 𝑭. 𝒏 𝑑𝑆
𝑠

  

                           = ∫ ∫ (1 − 𝑧)𝑑𝑧𝑑𝑥
4

0

3

−3
  

                           = ∫ [𝑧 −
𝑧2

2
]

0

4

𝑑𝑥
3

−3
  

                            = ∫ −4 𝑑𝑥
3

−3
= −24  

This alternative solution demonstrates an interesting property related to Stokes’ theorem: if two or 

more surfaces share the same closed curve, their surface integrals (of the Stokes’ theorem) give the 

same value. 
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14.3 GREEN’S THEOREM  (CIRCULATION FORM) 

Green’s theorem enables an integral over a plane area to be expressed in terms of a line integral round 

its boundary curve. Let P and Q be two functions of x and y that are, along with their first partial 

derivatives, finite and continuous inside and on the boundary c of a region R in the x-y plane. 

 ( )  +−=











−





cR

QdyPdxdxdy
x

Q

y

P
 

That is, a double integral over the plane region R can be transformed into a line integral over the 

boundary c of the region – and the action is reversible. 

If P and Q are two single-valued functions of x and y, continuous 

over a plane surface S, and c is its boundary curve, then 

( ) dxdy
y

P

x

Q
QdyPdx

Sc
 












−




=+   

where the line integral is taken round c in an anticlockwise manner. In vector terms, this becomes: 

S is a two-dimensional space enclosed by a simple closed curve c. 

RHS: dxdydS =  

dy dx   dS  k==


nSd  

If ji QPF +=  where P=P(x,y) and Q=Q(x,y),  then 













−




+












−−












−=












=

y

P

x

Q

z

P

z

Q

QP

curl kji 00

0
zyx

kji

F   

But in the x-y plane, 0=



=





z

P

z

Q
.   












−




=

y

P

x

Q
  curl  kF  

So 


= dS  .  .d  nFSF curlcurl   and in the x-y plane, kn=


 

( )  











−




=












−




=

SsS

dxdy
y

P

x

Q
dS

y

P

x

Q
curl kk ..d  SF  

If the first partial derivatives are continuous within the region 

and on the boundary, then Green’s theorem states that  
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 











−




=

SS

dxdy
y

P

x

Q
curl SF.d  (1) 

 

Now by Stokes’ theorem  

 

 

LHS: in this case ( ) ( )dzdydxQPd
cc

kjijirF +++=  ..  

              ( ) +=
c

QdyPdx  

  +=
c c

QdyPdxdrF.             

(2) 

Therefore from (1) and (2)  

Stokes’ theorem  =
cS

curl rSF d  .d . F in two dimensions becomes Green’s theorem 

 +=











−





cS

QdyPdxdxdy
y

P

x

Q
 

 

Example 14.5: 

Verify Green’s theorem for the integral ( ) ( )  +++
c

dyyxdxyx 222  taken round the boundary curve 

c defined by 

0

4

0
22

=

=+

=

x

yx

y

  

20

20

20







y

x

x

  

 

Green’s theorem:  ( ) +=











−





cS

dydx
y

P

x

Q
dy Q  dx  P   

In this case ( ) ( ) dy Q  dx 222 +=+++ Pdyyxdxyx  

22 yxP +=   and yxQ 2+=  

We now take c1, c2, c3 in turn. 

 =
c

SF rF dcurl
s

..d  
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(1) c1: y=0;  dy=0 

( )
3

8

3
dy Q  dx  

2

0

32

0

2

1

=







==+ 

x
dxxP

c

 

 

(2) c2: 422 =+ yx     ( ) 2/1222 x-4y    4 =−= xy  

( ) 2/12422 xxyx −+=+  

( ) ( ) dxdxxxdy
x

x
24

2/12 24
2

1
−

−
−

=−−=  

( ) ( ) dx
x

x
xxP

cc

  
4

424dy Q    dx  
22

2

2




























−

−
−++=+  

  dx
x

x
x

c

  
4

24
2

2

2

 








−
−−=  

Putting x = 2 sin θ   cos24 2 =− x   ddx cos2=  

 

Limits: x=2 ;
2


 =  x=0 , θ=0 

( ) 







dP
c

cos2
cos2

sin4
sin44dy Qdx 

0

2/

2

2

 







−−=+  

  

0

2/

2

2

2sin

2

1
sinsin24




 


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Finally  

(3) c3:  x=0;  dx=0 
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 Therefore, collecting our three partial results 
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That is one part done. Now we have to evaluate dydx
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It will be more convenient to work in polar coordinates, so we make the substitutions 

  ;cosrx =  ;sinry =  ddrrdxdydS   ==  
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So we have established once again that 
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