WEEK 2: PARTIAL DERIVATIVES & ENGINEERING APLICATIONS OF PARTIAL
DERIVATIVES

2.1 BASIC IDEA & DEFINITION

For a function of a single variable, y = f(x), changing the independent variable x leads to a
corresponding change in the dependent variable y. The rate of change of y with respect to x is given
by the derivative, written df/dx. A similar situation occurs with functions of more than one variable.

For clarity we consider functions of just two variables. In the relation z = f(x, y) the independent
variables are x and y and z is the dependent variable. Now both of the variables x and y may change
simultaneously inducing a change in z. However, rather than consider this general situation, we shall,
to begin with, hold one of the independent variables fixed. This is equivalent to moving along a curve
obtained by intersecting the surface by one of the coordinate planes.

Let’s start with the function f{x,y) = 2x?y® and let’s determine the rate at which the function is changing
at a point (a,b), if we hold y fixed and allow x to vary and if we hold x fixed and allow y to vary.

We'll start by looking at the case of holding y fixed and allowing x to vary. Since we are interested in
the rate of change of the function at (a,b) and are holding y fixed this means that we are going to
always have y = b. Doing this will give us a function involving only x’s and we can define a new function
as follow:

g(x) = f (x,b) = 2x°b°

Now, this is a function of a single variable and at this point all that we are asking is to determine the
rate of change of g(x) at x = a . In other words, we want to compute g’(a) and since this is a function
of a single variable we already know how to do that. Here is the rate of change of the function at (a,b)
if we hold y fixed and allow x to vary.

g'(a) = 4ab?

We will call g’(a) the partial derivative of f (x,y) with respect to x at (a,b) and we will denote it in the
following way

fx(a,b) = 4ab?

Now, let’s do it the other way. We will now hold x fixed and allow y to vary. We can do this in a similar
way. Since we are holding x fixed it must be fixed at x = a and so we can define a new function of y and
then differentiate this as we’ve always done with functions of one variable.

hly) =f(ay) =20’ => h’(b) = 6a°b?

In this case we call h’(b) the partial derivative of f (x,y) with respect to y at (a,b) and we denote it as
follow

fy(a,b) = 6a°b?

Note as well that we usually don’t use the (a,b) notation for partial derivatives. The more standard
notation is to just continue to use (x,y). So, the partial derivatives from above will more commonly be
written as,



fx(xy) =4xy’ and f,(xy) = 6x°y

Now, as this quick example has shown taking derivatives of functions of more than one variable is
done in pretty much the same manner as taking derivatives of a single variable. To compute f, (x,y) all
we need to do is treat all the y’s as constants (or numbers) and then differentiate the x’s as we’ve
always done. Likewise, to compute f, (x,y) we will treat all the x’s as constants and then differentiate
the y’s as we are used to doing.

Here are the formal definitions of the two partial derivatives we looked at above.

flx+hy)—f(x,y) . fy+h)—f(xy)
fy(xy) = lim A

&@”=M% A

Now let’s take a quick look at some of the possible alternate notations for partial derivatives. Given
the function z = f (x,y) the following are all equivalent notations,

f

d
(e y) =fi = a_z

d dz
x a(f(x,y))=zx=a=Dxf

af 0 0z
fy(er) = fy = @ = @(f(xd’)) =2z, = @ = Dyf

For the fractional notation for the partial derivative notice the difference between the partial
derivative and the ordinary derivative from single variable calculus.

. d
=2
0 0
FG) = i) = 5 &) =2
Key Point

The Partial Derivative of f with respect to =
For a function of two variables z = f(x,y) the partial derivative of f with respect to r is denoted
by:
af
ar
and is obtained by differentiating f(x,y) with respect to = in the usual way but treating the

y-variable (temporarily) as if it were a constant.
Alternative notations are fi(z,y) and g—;,

Key Point

The Partial Derivative of f with respect to y

For a function of two variables z = f(x, y) the partial derivative of f with respect to y is denoted
by:

af

Ay

and is obtained by differentiating f(x,y) with respect to y in the usual way but treating the
z-variable (temporarily) as if it were a constant.
Alternative notations are fy(z,y) and g—;—



. . . . af
As we have seen, a function of two variables f(x,y) has two partial derivatives, — and —y In an exactly

af @
analagous way a function of three variables f(x,y,u) will have three partial derivatives a_f a—fand -

and so on for functions of more than three variables. Each partial derivative is obtained in the same
way:

Key Point

The Partial Derivatives of f(z,y,uw, v, w,...)

For a function of several variables z = f(z,y, u,v,w,...) the partial derivative of f with respect
to v (say) is denoted hy:

of

dv
and is obtained by differentiating f(zr,y, u,v,w,...) with respect to v in the usual way but
treating all the other variables (temporarily) as if they were constants.
Alternative notations are f,(z,y, u,v,w...) and %.

Example 2.1: Find the partial derivative of f with respect to x and y.

(i) f(x,y) = x?y3

0
f(y) =fi = % = ny3

fy(xvy) fy f = 3x2y2
(ii) f(x,y) = xe™”

0
fe(,y) = fi = f = e +xye™

d
fy(x'y) = fy = % = x%e™

2.2 HIGHER ORDER PARTIAL DERIVATIVES

Just as we had higher order derivatives with functions of one variable, we will also have higher order
derivatives of functions of more than one variable. However, this time we will have more options since
we do have more than one variable.

Consider the case of a function of two variables, f(x,y) since both of the first order partial derivatives
are also functions of x and y we could in turn differentiate each with respect to x or y. This means that
for the case of a function of two variables there will be a total of four possible second order derivatives.
Here they are and the notations that we’ll use to denote them.

()= 5

(fx)x = fox = ox axz



1y = for =35 (3) = )

ax) Jdydx

_ _ a (0f B azf
s = b = 5(55) = 5207
o (Af\ 0%

(By)y = fyy = @(@) = a_y2

The second and third second order partial derivatives are often called mixed partial derivatives since
we are taking derivatives with respect to more than one variable. Note as well that the order that we
take the derivatives in is given by the notation for each these. If we are using the subscripting
notation, e.g. f,,, then we will differentiate from left to right. In other words, in this case, we will
differentiate first with respect to x and then with respect to y. With the fractional notation, e.g., it is
the opposite. In these cases we differentiate moving along the denominator from right to left. So,
again, in this case we differentiate with respect to x first and then y.

Example 2.2: Find all the second order derivatives for
flx,y) = x*y® — x%y°

% = 4x3y? — 2xy®
Z—§ = 2x*y — 6x2y°
i}; = 12x2y?% — 2y°
ﬁé = 2x* — 30x%y*
y
66;26]; = 8x3y — 12xy®
aa:gy = 8x3y — 12xy®

. : L a2 a2 .
We prove that the mixed partial derivatives ay_a]; and axafy are equals at points where both are

continuous. This goes under several different names including “equality of mixed partials” and
“Clairaut’s theorem”.

So far we have only looked at second order derivatives. There are, of course, higher order derivatives
as well. Here are a couple of the third order partial derivatives of function of two variables.



~ BN AN Y
Fayx = (fay)x = &(ayax>  0xdydx

d (0?2 23
fyxx = (fyx)x = a( / ) !

dxdy = 9x2 oy

Notice as well that for both of these we differentiate once with respect to y and twice with respect
to x. There is also another third order partial derivative in which we can do this, fyy.

2.3 COMPOSITE FUNCTION

Composite function is a function where one function is inside of another function. We need to use
chain rule to differentiate composite of functions.

Recall the chain rule for ordinary derivatives: if y = f(u) and u = g(x) then

dy dydu
dx  dudx
In the above we call u the intermediate variable and x the independent variable.

For partial derivatives the chain rule is more complicated. It depends on how many intermediate
variables and how many independent variables are present. Below three theorems are given which it
is hoped indicate the general points. Essentially, every intermediate variable has to have a term
corresponding to it in the right hand side of the chain rule formula. For example in the second theorem
below there are three intermediate variables x, y and z and three terms in the RHS.

Theorem 1: Chain rule for functions of two independent variables

w = f(x, ¥) De[?enden[
variable

Intermediate
variables

dx
dr
Independent

! variable
dw _ dw dx dw dy

dr  ax dr dy di

Theorem 2: Chain rule for functions of three independent variables



w = f(x,y,z) Dependent
variable

Intermediate
variables

Independent
variable

Theorem 3: Chain rule for two independent variables and three intermediate variables

b= fX. ¥, 2 w = f(x, y,
Dependent R =fy2)
variable
f
Intermediate
variables
Independent
variables
r 3
w = f(glr,s), h(r, 5), k(r,5)) dw _Owdx  dwdy  owaz dw _dwax  awdy
r o dx dr ¥ dy ar * daz ar as oxds dy ds s

To summarize,

Theorem 1. If w = f(z,y) has continuous partial derivative and x and y are given as functions
of t, then the derivative of the composite function w(t) = f(z(t),y(t)) is given by

dw _ dfdr  8f dy

dt — drdt | Oy dt

Theorem 2. If w = f(x,y,z) has continuous partial derivative and x, y and z are given as
functions of t, then the derivative of the composite function w(t) = f(x(t), y(t), z(t)) is given by
dw Of dx dey_l_afdz
dt  Oxdt ' Bydt ' 9z dt

Theorem 3. If w = f(z,y,z), x = g(r,s), y = h(r,s) and z = k(r, s), then the partials of w with
respect to r and s are given by

bw_owde oy ow:
I  drdr dydr 09z 0r

az ds



aTt(l 5 s s s IS s s
Oow OJwdr OJwdy  Owdz

ds  Oxds  dyds 0z 0s

Example 2.3:

(i) Let F = f(x,y) = xy + 2y and x = t, y = e~ ". Calculate dF/dt using the chain rule.

ar (8f) dx N <6f) dy
dt ~ \ax/dt " \ay/dt
dx dy
=V + (x + Z)E
=e {()+ (t+2)(—e™)
(i) Let F = f(x,y) =x3 —xy +y3and x = rcos @, y = rsin 6. Calculate dF/dr and dF/d6.
ar (af) 0x N (af) dy
dr  \ox/or \ay/or

dr
= = (3x%2 —y)cosO + (—x + 3y?)sin @

dF

5 = 3r2(cos® 0 + sin30) — 2r cos O sin O

()2

e~ \ox dy) a6
dF 5 _ )
0 (3x2 —y)(—rsinB) + (—x + 3y?*)rcosH
dF
= 3r3(sin® — cos )cos 0 sin  + r?(sin? 6 — cos?0)

(iii) Let F = f(x,y,z) =xy +zand x = cost, y = sint and z = t. Calculate dF/dt.

dF_6F6x+6F6y+6Faz
dt 9dxdt dyodt dzat

=y(—sint) + x(cost) + (1)(1)

= —sin’t + cos’t + 1

(iv) What rate is the area of a rectangle changing if its length is 15 m and increasing at 3 ms™ while
its width is 6 m and increasing at 2 ms™?



Let x be the length, y the width, A the area and t = time. The information given tells us that

dx y
—_— _1—=
It 3ms > 2ms

-1
Obviously A = xy. We want dA/dt when x = 15 and y = 6. This is given by the chain rule as follow:

dA_aAdx+6Ady_ dx d (6)(3) + (15)(2) = 48
dt " oxde oydt Ydr Far T

2.4 IMPLICIT FUNCTION

The chain rule can also be used to derive a simpler method for finding the derivative of an implicitly
defined function.

Suppose that F(x,y) = 0 defines y as an implicit function of x we will call y = f(x). We wish to find dy/dx.
We do so by differentiating both sides of F(x,y) = 0 with respect to x. To differentiate the left side with
respect to x, F (x,y), we will use the chain rule, remembering that F(x,y) = F (x,f(x)). So, F is ultimately
a function of x.

dF (af)dx_I_ of dy
dx ox/dx "0y’ dx
ar (6f)+ af dy
dx  \ox ay dx

0= (G)+ G

dy  0f/ox
dx  of/dy

Example 2.4: Find dy/dx if
(2xy—y3+1—-x—-2y=0

fl,y)=2xy—y3+1—x—2y

dy  0f/ox
dx  0f/dy
_ 2y —1
2x —3y? —2

(ii)x —x%y3=0



flx,y) = x —x*y?

dy — 1-2xy®
dx ~ —3x2y?

Now suppose z is given implicitly as a function z = z(x,y) by an equation of the form f(x,y,z) = 0. By chain
rule, we can get partial derivatives of:

dz  0f/ox
ox  of/oz
dz  0f/dy
ay  9f/oz

2.5 PARTIAL DERIVATIVES USING JACOBIAN

Example 2.5(ii) may be viewed as an example of transformation of coordinates. Consider the
transformation or mapping from the (x,y) plane to the (u,v) plane defined by

u=u(xy), v=v(xy)

Then a function F = f(x,y) of x and y becomes a function F = T(u,v) of u and v under the transformation,
and the partial derivatives are related by the chain rule:

6F_6F6u+6F6v

dx Oudx 0dvox

6F_6F6u+6F6v

dy oudy ovay
In matrix notation this becomes

oF du OvroF

ox| _|ox ox||ou

OF| " |ou ov]||oF

ayl lay ayllav
The determinant of the matrix of the transformation is called the Jacobian of the transformation and
is abbreviated to

o(u,v) mply to ]
or sim 0
9(x,7) P
So that
Ju O0v
]_a(u,v)_ ox ox | Ux Vx
a(x,y)  |0u dv[ " luy vy

dy 0dy



The matrix itself is referred to as the Jacobian matrix. The Jacobian plays an important role in various
applications of mathematics in engineering, particularly in implementing changes in variables in
multiple integrals.

We can also have x = X(u,v) and y = Y(u,v) which represent a transformation of the (u,v) plane into (x,y)
plane. This is called the inverse transformation and we can relate the partial derivatives by

6F_6F6x+6F6y
du dxdu dyodu
6F_6F6x+6F6y
ov  9x0dv 0dyodv

The Jacobian of this inverse transformation is

_0xy)
S o(wv)

Xu  Yu
Xy Y

J1

And, provided J # 0, it is always true that J; = Jt or

d(x,y)0(uw,v)
O v)d(xy)

If J = 0 then the variables u and v are functionally dependent; that is, a relationship of the form f(u,v)
= 0 exists. This implies a non-unique correspondence between points in the (x,y) and (u,v) planes.

Example 2.5:
(i)
Obtain the Jacobian J of the transformation u=(2x-y)/2 and v=y/2. Determine the inverse

transformation and obtain J1. Show that J;=J*

1
CICEO N e

TTaen T,

1
2

Re-arranging, x=u+v and y=2v, therefore

_oxy) _ |11 1) _
Ji= 2o — 10 2| = 2 (shown)

(ii)

9(x.y) and the inverse J* = 9(.8)

— -1
a(r,0) 0y’ Show that J; =

If x=rcos B, y=rsin 0; evaluate J; =

dx 0x
d(x,y) _ ar 06 _ |cos® —rsinb
a(r,0) |[dy Oy sinf  rcos6
ar 86

=rcos?0 + rsin’0 =r

10



Re-arranging, r> = x* + y2, 0 = tan"(y/x)

10r Ory

- x Yy
ar,0) lox ay| |7 7| _x* y* x*+y* r*
—a(x,y)_ a0 ao|= |-y x _r_3+r_3_ 3 ——3—;(shown)
x 9y 72 y2

2.6 TOTAL DIFFERENTIAL

Partial derivatives occur in the mathematical modelling of many engineering problems; this leads to
the study of partial differential equations. Partial differentiation is also a tool for the analysis of many
practical problems.

The total differential of the function of two variables (x,y) defined by F = f(x,y) is given by

d d
dF = —f dx + —f dy
dx dy
Differential dF is an approximation to change AF in F = f(x,y) resulting from small changes Ax and Ay
in the independent variables x and vy, i.e.
d a
AF = —fo + —fAy
0x dy
This extends to functions of as many variables as we please, provided that the partial derivatives exist.
For example, for a function of three variables (x,y,z) defined by F = f(x,y,z), we have
af af af

dF = adx+@dy+5dz

And thus

af af af
AF ~ —Ax+—Ay +—A
ax * dy y+ 9z 7
The total differential therefore shows the variation of the function with respect to small changes in all

the independent variables.

Example 2.6: Compute the total differential for the function F = x¥

dF = yx?¥"'dx + x¥Inx dy

All physical measurements are subjected to error, and a calculated quantity usually depends on
several measurements. It is very important to know the degree of accuracy that can be relied upon in
a quantity that has been calculated. The total differential can be used to estimate error bounds for
guantities calculated from experimental results or from data that is subject to errors. This is illustrated
in example 2.7.

11



Example 2.7:

The volume of a circular cylinder of radius r and height h is given by V = rtr?h. If r = 3 cm subject to an
error of 0.01 cm and h =5 cm subject to an error of 0.005 cm, find the greatest possible error in the
calculation of V.

The total differential is

av av
AV =~ —dr + —dh = 2arh dr + nr?dh
or oh

AV =~ nr(2hAr + rAh)

When r =3 and h =5, we are given that dr = 0.01 and dh = 0.005, so that

AV = 3m(10 x 0.01 + 3 x 0.005) = 0.3457

Example 2.8:

A balloon is in the form of right circular cylinder of radius 1.5m and length 4m and is surrounded by
hemispherical ends. If the radius is increased by 0.01m and the length by 0.05m, find the percentage
change in the volume of the balloon.

1.2 1M

I
4—;—»

Volume of balloon = volume of cylinder + volume of 2 hemispheres
V = 1r?h + (2/3)r3 + (2/3)mr® = wr?h + (4/3) 7

av~ P ar + Y an
~or Y T on

AV = 2rmh dr + 4nr? dr + nr? dh
When r=1.5 and h=4, dr=0.01 and dh=0.05, hence

AV ~ 2(1.5)m(4)(0.01) + 47(1.5)2(0.01) + m(1.5)2 (0.05) = 0.32257 = 1.013

% change in volume =100 x (1.013/V) = 100 x (1.013/42.411) = 2.39%

12



2.7 TANGENT PLANES AND NORMAL TO SURFACES IN THREE DIMENSIONS

The circle, ellipse, hyperbola and parabola of two dimensions generalize in three dimensions to give
the sphere, ellipsoid, hyperboloid and paraboloid as illustrated. Equations of these surfaces are as
follow:

(a) Sphere: x? + y2 + z2 = r?
2 2 2
(b) Ellipsoid: = + 2> + 5 = 1

(c) Elliptic paraboloid: i + v =cz
‘a2 b2

2 2
(d) Hyperbolic paraboloid: % — % =cz

2 2 2
(e) Hyperboloid of one sheet: % + 2’_2 _ i_z -1
2 2 2
(f)Hyperboloid of two sheets: % + Z_Z _ j_z I
2 2 2
(g) Elliptic cone: = + 3> — 5 = 0

13



In general, let f(x,y,z) = 0 be the equation of a surface in three dimensions:

af af af
d —d +—dy+—dz=0
f= 9y Y %z
Interpreting this geometrically, we can say that if P is the point (x,y,z) and Q is the point (x + dx, y + dy,
z + dz) then PQ is a tangent line to the surface. Since the equation before implies that the scalar
product
af of of
F A 47" d:d :d =0
(ax dy az) (dx, dy, dz)
we deduce that the vector (dx,dy,dz) is perpendicular to the vector (df/dx, df/dy, 0f/dz). Therefore
all the tangent lines to the surface at P are perpendicular to the vector (df/dx, af/dy, f/dz). Hence,
equation of the tangent plane to the surface at the point (xo,y0,20) on the surface is given by:
af af af
=) (55) + 0w (5;) + @) (5;) =

0 0

Where

of

(5)0 = fx(xO'in ZO), and SO on

The equation of the normal at the point (xg,y0,20) is:

xxo yYO ZZo

()o()o()o

Example 2.9:
Find the tangent plane to x> —y?+z—9 =0 at (1,2,4).

Determining the slopes of the tangent plane,

14



of of _ . Of _

a = 2x, @ = —uYy, E 1
of of of
D2l o)
ax (1.24) ay (1,2,4) aZ (1,2,4)

The equation of the tangent plane is therefore:

2(x-1) +4(y-2) +(z-4) =0or2x+4y+z=14

The surface
2 4+yi41-9=0
Fo(1.2.4)

-

_— Normal line

Tangent planc

The dotted lines are the x, y, z tangent lines. They lie in the plane. All tangent lines lie in the tangent
plane. These particular lines are tangent to the ‘partial functions’ — where z is fixed at z, = 4, y is fixed
atyo=2 and x s fixed at xo = 1. The plane is balancing on the surface and touching at the tangent point.

The equation of normal line in parametric form:
X =Xo+1(2,4,1)
Y =Yo+1(2,4,1)
z=20+1(2,4,1)

So, at (1,2,4),

x=1+2t
y=2+4t
z=4+t

Therefore, the symmetric equation of the normal at the point (1,2,4) is:

x—1 y—-2 z—4
2 4 1

15



The normal vector N has components 2, 4, 1. Starting from (1,2,4) the line goes out along N-
perpendicular to the plane and the surface, as shown in the figure above.

Example 2.10:

Find the tangent plane and normal line to the ellipsoid x3/4 + y? + 22/9 = 3 at point (-2,1,-3).

of _x of _ of 2
ox 2’ dy Y9z" 9

At point (-2,1,-3),

af af of 2
(a)(—m,—g) =-1, (@)(—2,1,—3) =2, (a_z)(—Z,l,—3) =3

Thus, the equation of the tangent plane at (-2,1,-3) is:

-1(x+2) + 2(y-1) — [2(z+3)]/2=00r3x-6y + 22+ 18=0

The normal line at (-2,1,-3) is therefore:

x+2 y—-1 z+43

-1 2 2
3
The figure shows e
the ellipsoid, 7 4
tangent plane, | /i
and normal line. - [
z -2 ~“ 22
-4 3
-6 |
T8 =2

Example 2.11:

Find the equation of tangent plane to the hyperboloid in 2 sheets x* —y? — z2 = 4 at the point (3,2,1).

of of of
a—Zx, @— Zy,az— 2z

16



At point (3,2,1),

of _ o _ O
ox ' dy 9z

The equation of tangent plane:

6(x—-3)-4(y-2)-2(z-1)=0

z=3x-2y-4

Example 2.12:

. . ., ,~15 15 , .
Find an equation of the tangent plane at the point (ﬁ’ﬁ’ 2) on a power plant’s cooling tower that
is part of the hyperboloid of one sheet

x2 yZ ZZ

s2t3z 27
of 2 of 2y 0f -z

ox 25 ay 9’9z 2
. -15 15
At point (ﬁ'ﬁ'z)'

of -6 of 10 of
ax_s\/ﬁ' ay_g\/ﬁ'az_

Thus, the equation of tangent plane:

5‘_/%(x+x/1%)+3\1/2_7(y_\/lf—7>—1(2—2)=0

-6 90 N 10 50 oo
x— -———Z =
V17~ 5(17) 3\/17)’ 17

17



-6 4 10
x
5v17 3v17

—18x + 50y — 30v17 — 15V17z = 0

y—2—z=0

18x — 50y + 15v17z = 30V17
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