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WEEK 2: PARTIAL DERIVATIVES & ENGINEERING APLICATIONS OF PARTIAL 

DERIVATIVES 

2.1 BASIC IDEA & DEFINITION 

For a function of a single variable, y = f(x), changing the independent variable x leads to a 

corresponding change in the dependent variable y. The rate of change of y with respect to x is given 

by the derivative, written df/dx. A similar situation occurs with functions of more than one variable. 

For clarity we consider functions of just two variables. In the relation z = f(x, y) the independent 

variables are x and y and z is the dependent variable. Now both of the variables x and y may change 

simultaneously inducing a change in z. However, rather than consider this general situation, we shall, 

to begin with, hold one of the independent variables fixed. This is equivalent to moving along a curve 

obtained by intersecting the surface by one of the coordinate planes. 

Let’s start with the function f(x,y) = 2x2y3 and let’s determine the rate at which the function is changing 

at a point (a,b), if we hold y fixed and allow x to vary and if we hold x fixed and allow y to vary.  

We’ll start by looking at the case of holding y fixed and allowing x to vary. Since we are interested in 

the rate of change of the function at (a,b) and are holding y fixed this means that we are going to 

always have y = b. Doing this will give us a function involving only x’s and we can define a new function 

as follow: 

g(x) = f (x,b) = 2x2b3 

Now, this is a function of a single variable and at this point all that we are asking is to determine the 

rate of change of g(x) at x = a . In other words, we want to compute g’(a) and since this is a function 

of a single variable we already know how to do that. Here is the rate of change of the function at (a,b) 

if we hold y fixed and allow x to vary. 

g'(a) = 4ab3 

We will call g’(a) the partial derivative of f (x,y) with respect to x at (a,b) and we will denote it in the 

following way 

fx (a,b) = 4ab3 

Now, let’s do it the other way. We will now hold x fixed and allow y to vary. We can do this in a similar 

way. Since we are holding x fixed it must be fixed at x = a and so we can define a new function of y and 

then differentiate this as we’ve always done with functions of one variable. 

h(y) = f (a,y) = 2a2y3     =>   h’(b) = 6a2b2 

In this case we call h’(b) the partial derivative of f (x,y) with respect to y at (a,b) and we denote it as 

follow 

fy (a,b) = 6a2b2 

Note as well that we usually don’t use the (a,b) notation for partial derivatives. The more standard 

notation is to just continue to use (x,y). So, the partial derivatives from above will more commonly be 

written as, 
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fx (x,y) = 4xy3   and  fy (x,y) = 6x2y2 

Now, as this quick example has shown taking derivatives of functions of more than one variable is 

done in pretty much the same manner as taking derivatives of a single variable. To compute fx (x,y) all 

we need to do is treat all the y’s as constants (or numbers) and then differentiate the x’s as we’ve 

always done. Likewise, to compute fy (x,y) we will treat all the x’s as constants and then differentiate 

the y’s as we are used to doing. 

Here are the formal definitions of the two partial derivatives we looked at above. 

𝑓𝑥(𝑥, 𝑦) = lim
ℎ→0

𝑓(𝑥 + ℎ, 𝑦) − 𝑓(𝑥, 𝑦)

ℎ
   𝑓𝑦(𝑥, 𝑦) = lim

ℎ→0

𝑓(𝑥, 𝑦 + ℎ) − 𝑓(𝑥, 𝑦)

ℎ
        

Now let’s take a quick look at some of the possible alternate notations for partial derivatives. Given 

the function z = f (x,y) the following are all equivalent notations, 

𝑓𝑥(𝑥, 𝑦) = 𝑓𝑥 =
𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑓(𝑥, 𝑦)) = 𝑧𝑥 =

𝜕𝑧

𝜕𝑥
= 𝐷𝑥𝑓 

𝑓𝑦(𝑥, 𝑦) = 𝑓𝑦 =
𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
(𝑓(𝑥, 𝑦)) = 𝑧𝑦 =

𝜕𝑧

𝜕𝑦
= 𝐷𝑦𝑓 

For the fractional notation for the partial derivative notice the difference between the partial 

derivative and the ordinary derivative from single variable calculus. 

𝑓(𝑥) → 𝑓 ′(𝑥) =
𝑑𝑓

𝑑𝑥
 

𝑓(𝑥, 𝑦) → 𝑓𝑥(𝑥, 𝑦) =
𝜕𝑓

𝜕𝑥
 & 𝑓𝑦(𝑥, 𝑦) =

𝜕𝑓

𝜕𝑦
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As we have seen, a function of two variables f(x,y) has two partial derivatives, 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 . In an exactly 

analagous way a function of three variables f(x,y,u) will have three partial derivatives 
𝜕𝑓

𝜕𝑥
, 
𝜕𝑓

𝜕𝑦
 and 

𝜕𝑓

𝜕𝑢
 

and so on for functions of more than three variables. Each partial derivative is obtained in the same 

way: 

 

 

Example 2.1: Find the partial derivative of f with respect to x and y. 

(i) 𝑓(𝑥, 𝑦) = 𝑥2𝑦3 

𝑓𝑥(𝑥, 𝑦) = 𝑓𝑥 =
𝜕𝑓

𝜕𝑥
= 2𝑥𝑦3 

𝑓𝑦(𝑥, 𝑦) = 𝑓𝑦 =
𝜕𝑓

𝜕𝑦
= 3𝑥2𝑦2 

(ii) 𝑓(𝑥, 𝑦) = 𝑥𝑒𝑥𝑦 

𝑓𝑥(𝑥, 𝑦) = 𝑓𝑥 =
𝜕𝑓

𝜕𝑥
= 𝑒𝑥𝑦 + 𝑥𝑦𝑒𝑥𝑦 

𝑓𝑦(𝑥, 𝑦) = 𝑓𝑦 =
𝜕𝑓

𝜕𝑦
= 𝑥2𝑒𝑥𝑦 

 

2.2 HIGHER ORDER PARTIAL DERIVATIVES  

Just as we had higher order derivatives with functions of one variable, we will also have higher order 
derivatives of functions of more than one variable. However, this time we will have more options since 
we do have more than one variable. 

Consider the case of a function of two variables, f(x,y) since both of the first order partial derivatives 
are also functions of x and y we could in turn differentiate each with respect to x or y.  This means that 
for the case of a function of two variables there will be a total of four possible second order derivatives. 
Here they are and the notations that we’ll use to denote them. 

(𝑓𝑥)𝑥 = 𝑓𝑥𝑥 =
𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑥2
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(𝑓𝑥)𝑦 = 𝑓𝑥𝑦 =
𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑦𝜕𝑥
 

 

(𝑓𝑦)𝑥 = 𝑓𝑦𝑥 =
𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑥𝜕𝑦
 

 

(𝑓𝑦)𝑦 = 𝑓𝑦𝑦 =
𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑦2
 

 

The second and third second order partial derivatives are often called mixed partial derivatives since 
we are taking derivatives with respect to more than one variable.  Note as well that the order that we 
take the derivatives in is given by the notation for each these.  If we are using the subscripting 
notation, e.g. fxy, then we will differentiate from left to right. In other words, in this case, we will 
differentiate first with respect to x and then with respect to y. With the fractional notation, e.g. , it is 
the opposite.  In these cases we differentiate moving along the denominator from right to left.  So, 
again, in this case we differentiate with respect to x first and then y. 

 

Example 2.2: Find all the second order derivatives for 

𝑓(𝑥, 𝑦) = 𝑥4𝑦2 − 𝑥2𝑦6 

 

𝜕𝑓

𝜕𝑥
= 4𝑥3𝑦2 − 2𝑥𝑦6 

𝜕𝑓

𝜕𝑦
= 2𝑥4𝑦 − 6𝑥2𝑦5 

𝜕2𝑓

𝜕𝑥2
= 12𝑥2𝑦2 − 2𝑦6 

𝜕2𝑓

𝜕𝑦2
= 2𝑥4 − 30𝑥2𝑦4 

𝜕2𝑓

𝜕𝑦𝜕𝑥
= 8𝑥3𝑦 − 12𝑥𝑦5 

𝜕2𝑓

𝜕𝑥𝜕𝑦
= 8𝑥3𝑦 − 12𝑥𝑦5 

We prove that the mixed partial derivatives 
𝜕2𝑓

𝜕𝑦𝜕𝑥
 and 

𝜕2𝑓

𝜕𝑥𝜕𝑦
 are equals at points where both are 

continuous. This goes under several different names including “equality of mixed partials” and 

“Clairaut’s theorem”.  

So far we have only looked at second order derivatives. There are, of course, higher order derivatives 

as well. Here are a couple of the third order partial derivatives of function of two variables. 



5 
 

𝑓𝑥𝑦𝑥 = (𝑓𝑥𝑦)𝑥 =
𝜕

𝜕𝑥
(

𝜕2𝑓

𝜕𝑦𝜕𝑥
) =

𝜕3𝑓

𝜕𝑥𝜕𝑦𝜕𝑥
 

𝑓𝑦𝑥𝑥 = (𝑓𝑦𝑥)𝑥 =
𝜕

𝜕𝑥
(

𝜕2𝑓

𝜕𝑥𝜕𝑦
) =

𝜕3𝑓

𝜕𝑥2𝜕𝑦
 

Notice as well that for both of these we differentiate once with respect to y and twice with respect 

to x.  There is also another third order partial derivative in which we can do this, fxxy. 

 

2.3 COMPOSITE FUNCTION 

Composite function is a function where one function is inside of another function. We need to use 

chain rule to differentiate composite of functions. 

Recall the chain rule for ordinary derivatives: if y = f(u) and u = g(x) then 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
 

In the above we call u the intermediate variable and x the independent variable. 

For partial derivatives the chain rule is more complicated. It depends on how many intermediate 

variables and how many independent variables are present. Below three theorems are given which it 

is hoped indicate the general points. Essentially, every intermediate variable has to have a term 

corresponding to it in the right hand side of the chain rule formula. For example in the second theorem 

below there are three intermediate variables x, y and z and three terms in the RHS. 

 

Theorem 1: Chain rule for functions of two independent variables  

 

Theorem 2: Chain rule for functions of three independent variables 
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Theorem 3: Chain rule for two independent variables and three intermediate variables 

 

 

To summarize, 
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Example 2.3:  

(i) Let 𝐹 = 𝑓(𝑥, 𝑦) = 𝑥𝑦 + 2𝑦 and 𝑥 = 𝑡,  𝑦 = 𝑒−𝑡. Calculate dF/dt using the chain rule. 

𝑑𝐹

𝑑𝑡
= (

𝜕𝑓

𝜕𝑥
)
𝑑𝑥

𝑑𝑡
+ (

𝜕𝑓

𝜕𝑦
)
𝑑𝑦

𝑑𝑡
 

        = 𝑦
𝑑𝑥

𝑑𝑡
+ (𝑥 + 2)

𝑑𝑦

𝑑𝑡
 

                  = 𝑒−𝑡(1) + (𝑡 + 2)(−𝑒−𝑡) 

(ii) Let 𝐹 = 𝑓(𝑥, 𝑦) = 𝑥3 − 𝑥𝑦 + 𝑦3 and 𝑥 = 𝑟 cos 𝜃 ,  𝑦 = 𝑟 sin𝜃. Calculate dF/dr and dF/dθ. 

𝑑𝐹

𝑑𝑟
= (

𝜕𝑓

𝜕𝑥
)
𝜕𝑥

𝜕𝑟
+ (

𝜕𝑓

𝜕𝑦
)
𝜕𝑦

𝜕𝑟
 

𝑑𝐹

𝑑𝑟
= (3𝑥2 − 𝑦) cos𝜃 + (−𝑥 + 3𝑦2) sin 𝜃 

𝑑𝐹

𝑑𝑟
= 3𝑟2(𝑐𝑜𝑠3 𝜃 + 𝑠𝑖𝑛3𝜃) − 2𝑟 cos𝜃 sin𝜃 

 

𝑑𝐹

𝑑𝜃
= (

𝜕𝑓

𝜕𝑥
)
𝜕𝑥

𝜕𝜃
+ (

𝜕𝑓

𝜕𝑦
)
𝜕𝑦

𝜕𝜃
 

𝑑𝐹

𝑑𝜃
= (3𝑥2 − 𝑦)(−𝑟 sin𝜃) + (−𝑥 + 3𝑦2)𝑟 cos𝜃 

𝑑𝐹

𝑑𝑟
= 3𝑟3( sin 𝜃 − cos 𝜃)cos 𝜃 sin 𝜃 + 𝑟2(𝑠𝑖𝑛2 𝜃 − 𝑐𝑜𝑠2𝜃) 

 

(iii) Let 𝐹 = 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑧 and 𝑥 = cos 𝑡 ,  𝑦 = sin 𝑡  𝑎𝑛𝑑 𝑧 = 𝑡. Calculate dF/dt. 

𝑑𝐹

𝑑𝑡
=

𝜕𝐹

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝐹

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝐹

𝜕𝑧

𝜕𝑧

𝜕𝑡
 

                   = 𝑦(− sin 𝑡) + 𝑥(cos 𝑡) + (1)(1) 

= −𝑠𝑖𝑛2𝑡 + 𝑐𝑜𝑠2𝑡 + 1 

 

(iv) What rate is the area of a rectangle changing if its length is 15 m and increasing at 3 ms−1 while 

its width is 6 m and increasing at 2 ms−1? 
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Let x be the length, y the width, A the area and t = time. The information given tells us that 

𝑑𝑥

𝑑𝑡
= 3 𝑚𝑠−1,

𝑑𝑦

𝑑𝑡
= 2 𝑚𝑠−1. 

Obviously A = xy. We want dA/dt when x = 15 and y = 6. This is given by the chain rule as follow: 

𝑑𝐴

𝑑𝑡
=

𝜕𝐴

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐴

𝜕𝑦

𝑑𝑦

𝑑𝑡
= 𝑦

𝑑𝑥

𝑑𝑡
+ 𝑥

𝑑𝑦

𝑑𝑡
= (6)(3) + (15)(2) = 48 𝑚2𝑠−1 

 

 

2.4 IMPLICIT FUNCTION 

The chain rule can also be used to derive a simpler method for finding the derivative of an implicitly 

defined function. 

Suppose that F(x,y) = 0 defines y as an implicit function of x we will call y = f(x). We wish to find dy/dx.  

We do so by differentiating both sides of F(x,y) = 0 with respect to x. To differentiate the left side with 

respect to x, F (x,y), we will use the chain rule, remembering that F(x,y) = F (x,f(x)). So, F is ultimately 

a function of x. 

𝑑𝐹

𝑑𝑥
= (

𝜕𝑓

𝜕𝑥
)
𝑑𝑥

𝑑𝑥
+ (

𝜕𝑓

𝜕𝑦
)
𝑑𝑦

𝑑𝑥
 

𝑑𝐹

𝑑𝑥
= (

𝜕𝑓

𝜕𝑥
) + (

𝜕𝑓

𝜕𝑦
)
𝑑𝑦

𝑑𝑥
 

0 = (
𝜕𝑓

𝜕𝑥
) + (

𝜕𝑓

𝜕𝑦
)
𝑑𝑦

𝑑𝑥
 

𝑑𝑦

𝑑𝑥
= −

𝜕𝑓/𝜕𝑥

𝜕𝑓/𝜕𝑦
 

 

Example 2.4: Find dy/dx if 

(i) 2𝑥𝑦 − 𝑦3 + 1 − 𝑥 − 2𝑦 = 0 

𝑓(𝑥, 𝑦) = 2𝑥𝑦 − 𝑦3 + 1 − 𝑥 − 2𝑦 

𝑑𝑦

𝑑𝑥
= −

𝜕𝑓/𝜕𝑥

𝜕𝑓/𝜕𝑦
 

              =  
2𝑦 − 1

2𝑥 − 3𝑦2 − 2
 

 

(ii) 𝑥 − 𝑥2𝑦3 = 0 
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𝑓(𝑥, 𝑦) = 𝑥 − 𝑥2𝑦3 

𝑑𝑦

𝑑𝑥
= −

1 − 2𝑥𝑦3

−3𝑥2𝑦2
 

 

Now suppose z is given implicitly as a function z = z(x,y) by an equation of the form f(x,y,z) = 0. By chain 

rule, we can get partial derivatives of: 

𝜕𝑧

𝜕𝑥
= −

𝜕𝑓/𝜕𝑥

𝜕𝑓/𝜕𝑧
 

𝜕𝑧

𝜕𝑦
= −

𝜕𝑓/𝜕𝑦

𝜕𝑓/𝜕𝑧
 

 

2.5 PARTIAL DERIVATIVES USING JACOBIAN 

Example 2.5(ii) may be viewed as an example of transformation of coordinates. Consider the 

transformation or mapping from the (x,y) plane to the (u,v) plane defined by 

u = u(x,y), v = v(x,y) 

Then a function F = f(x,y) of x and y becomes a function F = T(u,v) of u and v under the transformation, 

and the partial derivatives are related by the chain rule: 

𝜕𝐹

𝜕𝑥
=

𝜕𝐹

𝜕𝑢

𝜕𝑢

𝜕𝑥
+

𝜕𝐹

𝜕𝑣

𝜕𝑣

𝜕𝑥
 

𝜕𝐹

𝜕𝑦
=

𝜕𝐹

𝜕𝑢

𝜕𝑢

𝜕𝑦
+

𝜕𝐹

𝜕𝑣

𝜕𝑣

𝜕𝑦
 

In matrix notation this becomes 

[
 
 
 
𝜕𝐹

𝜕𝑥
𝜕𝐹

𝜕𝑦]
 
 
 
=

[
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦]
 
 
 

[

𝜕𝐹

𝜕𝑢
𝜕𝐹

𝜕𝑣

] 

The determinant of the matrix of the transformation is called the Jacobian of the transformation and 

is abbreviated to 

𝜕(𝑢, 𝑣)

𝜕(𝑥, 𝑦)
 𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑦 𝑡𝑜 𝐽 

So that 

𝐽 =
𝜕(𝑢, 𝑣)

𝜕(𝑥, 𝑦)
= ||

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

|| = |
𝑢𝑥 𝑣𝑥

𝑢𝑦 𝑣𝑦
| 
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The matrix itself is referred to as the Jacobian matrix. The Jacobian plays an important role in various 

applications of mathematics in engineering, particularly in implementing changes in variables in 

multiple integrals. 

We can also have x = X(u,v) and y = Y(u,v) which represent a transformation of the (u,v) plane into (x,y) 

plane. This is called the inverse transformation and we can relate the partial derivatives by 

𝜕𝐹

𝜕𝑢
=

𝜕𝐹

𝜕𝑥

𝜕𝑥

𝜕𝑢
+

𝜕𝐹

𝜕𝑦

𝜕𝑦

𝜕𝑢
 

𝜕𝐹

𝜕𝑣
=

𝜕𝐹

𝜕𝑥

𝜕𝑥

𝜕𝑣
+

𝜕𝐹

𝜕𝑦

𝜕𝑦

𝜕𝑣
 

The Jacobian of this inverse transformation is 

𝐽1 =
𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)
= |

𝑥𝑢 𝑦𝑢

𝑥𝑣 𝑦𝑣
| 

And, provided J ≠ 0, it is always true that J1 = J-1 or 

𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)

𝜕(𝑢, 𝑣)

𝜕(𝑥, 𝑦)
= 1 

If J = 0 then the variables u and v are functionally dependent; that is, a relationship of the form f(u,v) 

= 0 exists. This implies a non-unique correspondence between points in the (x,y) and (u,v) planes. 

Example 2.5: 

(i)  

Obtain the Jacobian J of the transformation u=(2x-y)/2 and v=y/2. Determine the inverse 

transformation and obtain J1. Show that J1=J-1 

𝐽 =
𝜕(𝑢, 𝑣)

𝜕(𝑥, 𝑦)
= |

1 −
1

2

0
1

2

| =
1

2
 

Re-arranging, x=u+v and y=2v, therefore 

𝐽1 =
𝜕(𝑥,𝑦)

𝜕(𝑢,𝑣)
= |

1 1
0 2

| = 2  (shown) 

 

(ii) 

If x = r cos θ, y = r sin θ; evaluate J1 = 
𝜕(𝑥,𝑦)

𝜕(𝑟,𝜃)
 and the inverse J-1 = 

𝜕(𝑟,𝜃)

𝜕(𝑥,𝑦)
. Show that J1 = J-1 

𝜕(𝑥, 𝑦)

𝜕(𝑟, 𝜃)
= |

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃
𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

| = |
𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃

| = 𝑟𝑐𝑜𝑠2𝜃 + 𝑟𝑠𝑖𝑛2𝜃 = 𝑟 
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Re-arranging, r2 = x2 + y2, θ = tan-1(y/x) 

𝜕(𝑟, 𝜃)

𝜕(𝑥, 𝑦)
= ||

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑦
𝜕𝜃

𝜕𝑥

𝜕𝜃

𝜕𝑦

|| = |

𝑥

𝑟

𝑦

𝑟
−𝑦

𝑟2

𝑥

𝑟2

| =
𝑥2

𝑟3
+

𝑦2

𝑟3
=

𝑥2 + 𝑦2

𝑟3
=

𝑟2

𝑟3
=

1

𝑟
(𝑠ℎ𝑜𝑤𝑛) 

 

2.6 TOTAL DIFFERENTIAL 

Partial derivatives occur in the mathematical modelling of many engineering problems; this leads to 

the study of partial differential equations. Partial differentiation is also a tool for the analysis of many 

practical problems. 

The total differential of the function of two variables (x,y) defined by F = f(x,y) is given by 

𝑑𝐹 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 

Differential dF is an approximation to change ∆F in F = f(x,y) resulting from small changes ∆x and ∆y 

in the independent variables x and y, i.e. 

∆𝐹 ≈
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑓

𝜕𝑦
∆𝑦 

This extends to functions of as many variables as we please, provided that the partial derivatives exist. 

For example, for a function of three variables (x,y,z) defined by F = f(x,y,z), we have 

𝑑𝐹 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
𝑑𝑧 

And thus 

∆𝐹 ≈
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑓

𝜕𝑦
∆𝑦 +

𝜕𝑓

𝜕𝑧
∆𝑧 

The total differential therefore shows the variation of the function with respect to small changes in all 

the independent variables. 

 

Example 2.6: Compute the total differential for the function  𝐹 = 𝑥𝑦 

𝑑𝐹 = 𝑦𝑥𝑦−1𝑑𝑥 + 𝑥𝑦 ln 𝑥  𝑑𝑦 

 

All physical measurements are subjected to error, and a calculated quantity usually depends on 

several measurements. It is very important to know the degree of accuracy that can be relied upon in 

a quantity that has been calculated. The total differential can be used to estimate error bounds for 

quantities calculated from experimental results or from data that is subject to errors. This is illustrated 

in example 2.7. 
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Example 2.7: 

The volume of a circular cylinder of radius r and height h is given by V = 𝜋r2h. If r = 3 cm subject to an 

error of 0.01 cm and h = 5 cm subject to an error of 0.005 cm, find the greatest possible error in the 

calculation of V. 

The total differential is  

∆𝑉 ≈
𝜕𝑉

𝜕𝑟
𝑑𝑟 +

𝜕𝑉

𝜕ℎ
𝑑ℎ = 2𝜋𝑟ℎ 𝑑𝑟 + 𝜋𝑟2𝑑ℎ 

∆𝑉 ≈ 𝜋𝑟(2ℎ∆𝑟 + 𝑟∆ℎ) 

When r = 3 and h = 5, we are given that dr = 0.01 and dh = 0.005, so that 

∆𝑉 ≈ 3𝜋(10 × 0.01 + 3 × 0.005) = 0.345𝜋 

 

Example 2.8: 

A balloon is in the form of right circular cylinder of radius 1.5m and length 4m and is surrounded by 

hemispherical ends. If the radius is increased by 0.01m and the length by 0.05m, find the percentage 

change in the volume of the balloon. 

 

Volume of balloon = volume of cylinder + volume of 2 hemispheres 

V = 𝝅r2h + (2/3)r3 + (2/3)𝝅r3 = 𝝅r2h + (4/3)𝝅r3 

∆𝑉 ≈
𝜕𝑉

𝜕𝑟
𝑑𝑟 +

𝜕𝑉

𝜕ℎ
𝑑ℎ 

∆𝑉 ≈ 2𝑟𝜋ℎ 𝑑𝑟 + 4𝜋𝑟2 𝑑𝑟 + 𝜋𝑟2 𝑑ℎ 

 

When r=1.5 and h=4, dr=0.01 and dh=0.05, hence 

∆𝑉 ≈ 2(1.5)𝜋(4)(0.01) + 4𝜋(1.5)2(0.01) + 𝜋(1.5)2 (0.05) = 0.3225𝜋 = 1.013 

% change in volume = 100 x (1.013/V) = 100 x (1.013/42.411) = 2.39%  
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2.7 TANGENT PLANES AND NORMAL TO SURFACES IN THREE DIMENSIONS  

The circle, ellipse, hyperbola and parabola of two dimensions generalize in three dimensions to give 

the sphere, ellipsoid, hyperboloid and paraboloid as illustrated. Equations of these surfaces are as 

follow: 

(a) Sphere: 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 

(b) Ellipsoid: 
𝑥2

𝑎2 +
𝑦2

𝑏2 +
𝑧2

𝑐2 = 1 

(c) Elliptic paraboloid: 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 𝑐𝑧 

(d) Hyperbolic paraboloid: 
𝑦2

𝑏2 −
𝑥2

𝑎2 = 𝑐𝑧 

(e) Hyperboloid of one sheet: 
𝑥2

𝑎2 +
𝑦2

𝑏2 −
𝑧2

𝑐2 = 1 

(f)Hyperboloid of two sheets: 
𝑥2

𝑎2 +
𝑦2

𝑏2 −
𝑧2

𝑐2 = −1 

(g) Elliptic cone: 
𝑥2

𝑎2 +
𝑦2

𝑏2 −
𝑧2

𝑐2 = 0 
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In general, let f(x,y,z) = 0 be the equation of a surface in three dimensions: 

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
𝑑𝑧 = 0 

Interpreting this geometrically, we can say that if P is the point (x,y,z) and Q is the point (x + dx, y + dy, 

z + dz) then PQ is a tangent line to the surface. Since the equation before implies that the scalar 

product 

(
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
) ∙ (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) = 0 

we deduce that the vector (dx,dy,dz) is perpendicular to the vector (𝝏f/𝝏x, 𝝏f/𝝏y, 𝝏f/𝝏z). Therefore 

all the tangent lines to the surface at P are perpendicular to the vector (𝝏f/𝝏x, 𝝏f/𝝏y, f/𝝏z). Hence, 

equation of the tangent plane to the surface at the point (x0,y0,z0) on the surface is given by: 

(𝑥 − 𝑥0) (
𝜕𝑓

𝜕𝑥
)
0
+ (𝑦 − 𝑦0) (

𝜕𝑓

𝜕𝑦
)
0

+ (𝑧 − 𝑧0) (
𝜕𝑓

𝜕𝑧
)
0

= 0 

Where 

(
𝜕𝑓

𝜕𝑥
)0 = 𝑓𝑥(𝑥0, 𝑦0, 𝑧0), 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 

The equation of the normal at the point (x0,y0,z0) is: 

𝑥−𝑥0

(
𝜕𝑓

𝜕𝑥
)0

=
𝑦−𝑦0

(
𝜕𝑓

𝜕𝑦
)0
 = 

𝑧−𝑧0

(
𝜕𝑓

𝜕𝑧
)0

 

 

Example 2.9: 

Find the tangent plane to x2 – y2 +z – 9 = 0 at (1,2,4). 

Determining the slopes of the tangent plane, 
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𝜕𝑓

𝜕𝑥
= 2𝑥,  

𝜕𝑓

𝜕𝑦
= −2𝑦,  

𝜕𝑓

𝜕𝑧
= 1 

(
𝜕𝑓

𝜕𝑥
)(1,2,4) = 2, (

𝜕𝑓

𝜕𝑦
)
(1,2,4)

= 4, (
𝜕𝑓

𝜕𝑧
)
(1,2,4)

= 1 

The equation of the tangent plane is therefore: 

2(x-1) + 4(y-2) + (z-4) = 0 or 2x + 4y + z = 14 

 

 

The dotted lines are the x, y, z tangent lines. They lie in the plane. All tangent lines lie in the tangent 

plane. These particular lines are tangent to the ‘partial functions’ – where z is fixed at zo = 4, y is fixed 

at y0 = 2 and x is fixed at x0 = 1. The plane is balancing on the surface and touching at the tangent point. 

 

The equation of normal line in parametric form: 

x = x0 + t(2,4,1) 

y = y0 + t(2,4,1) 

z = z0 + t(2,4,1) 

So, at (1,2,4), 

x = 1 + 2t 

y = 2 + 4t 

z = 4 + t 

Therefore, the symmetric equation of the normal at the point (1,2,4) is: 

𝑥 − 1

2
=

𝑦 − 2

4
=

𝑧 − 4

1
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The normal vector N has components 2, 4, 1. Starting from (1,2,4) the line goes out along N-

perpendicular to the plane and the surface, as shown in the figure above. 

 

Example 2.10: 

Find the tangent plane and normal line to the ellipsoid x2/4 + y2 + z2/9 = 3 at point (-2,1,-3). 

𝜕𝑓

𝜕𝑥
=

𝑥

2
,  

𝜕𝑓

𝜕𝑦
= 2𝑦,

𝜕𝑓

𝜕𝑧
=

2𝑧

9
 

At point (-2,1,-3), 

(
𝜕𝑓

𝜕𝑥
)(−2,1,−3) = −1, (

𝜕𝑓

𝜕𝑦
)(−2,1,−3) = 2, (

𝜕𝑓

𝜕𝑧
)(−2,1,−3) =

−2

3
 

 

Thus, the equation of the tangent plane at (-2,1,-3) is: 

-1(x+2) + 2(y-1) – [2(z+3)]/2 = 0 or 3x - 6y + 2z + 18 = 0 

 

The normal line at (-2,1,-3) is therefore: 

𝑥 + 2

−1
=

𝑦 − 1

2
=

𝑧 + 3

−
2
3

 

 

 

Example 2.11: 

Find the equation of tangent plane to the hyperboloid in 2 sheets x2 – y2 – z2 = 4 at the point (3,2,1). 

𝜕𝑓

𝜕𝑥
= 2𝑥,  

𝜕𝑓

𝜕𝑦
= −2𝑦,

𝜕𝑓

𝜕𝑧
= −2𝑧 
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At point (3,2,1), 

𝜕𝑓

𝜕𝑥
= 6,  

𝜕𝑓

𝜕𝑦
= −4,

𝜕𝑓

𝜕𝑧
= −2 

The equation of tangent plane: 

6(x – 3) – 4(y – 2) – 2(z – 1) = 0 

z= 3x – 2y - 4 

 

 

 

Example 2.12: 

Find an equation of the tangent plane at the point (
−15

√17
,

15

√17
, 2) on a power plant’s cooling tower that 

is part of the hyperboloid of one sheet  

𝑥2

52
+

𝑦2

32
−

𝑧2

22
= 1 

𝜕𝑓

𝜕𝑥
=

2

25
𝑥,  

𝜕𝑓

𝜕𝑦
=

2𝑦

9
,
𝜕𝑓

𝜕𝑧
=

−𝑧

2
 

At point (
−15

√17
,

15

√17
, 2), 

𝜕𝑓

𝜕𝑥
=

−6

5√17
,  

𝜕𝑓

𝜕𝑦
=

10

3√17
,
𝜕𝑓

𝜕𝑧
= −1 

 

Thus, the equation of tangent plane: 

−6

5√17
(𝑥 +

15

√17
) +

10

3√17
(𝑦 −

15

√17
) − 1(𝑧 − 2) = 0 

−6

5√17
𝑥 −

90

5(17)
+

10

3√17
𝑦 −

50

17
− 𝑧 + 2 = 0 
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−6

5√17
𝑥 +

10

3√17
𝑦 − 2 − 𝑧 = 0 

−18𝑥 + 50𝑦 − 30√17 − 15√17𝑧 = 0 

18𝑥 − 50𝑦 + 15√17𝑧 = 30√17 

 


