
VECTOR ALGEBRA I 
WEEK 3: VECTOR ALGEBRA I 

3.1 INTRODUCTION 

In the world of engineering, physical quantities can be divided mainly into scalar and vector. These quantities 
can be represented by numbers alone (i.e., magnitude only), with the appropriate units, and they are called 
scalars. Another physical quantity with magnitude and direction are called vectors. Scalars and vectors are 
the underlying elements in vector analysis. 

Scalar vs Vector 

 Scalar Vector 

Example Mass; length; 
temperature; voltage 

Displacement; 
velocity; force; 
acceleration 

Unit of quantities kg; m; Degree; Volt m; ms-1; N; ms-1 

Direction No Yes 

Symbol/Notation 𝑎; 𝑏; 𝐴; 𝐵; 𝑃𝑄 �̰�; �̰�; 𝑂𝐴
→  
,  OB
→ 
,  PQ
→ 

 

 

3.2 BASIC CONCEPTS   

A scalar is a quantity that is determined by its magnitude. It takes on a numerical value, i.e., a number. 

Examples of scalars are time, temperature, length, distance, speed, density, energy, and voltage.  

  

A vector is a quantity that has both magnitude and direction. We can say that a vector is an arrow or a 

directed line segment.  For example, a velocity vector has length or magnitude, which is speed, and direction, 

which indicates the direction of motion (Fig 3.1); a force vector points in the direction in which the force acts 

and its length is a measure of the force’s strength.   

A vector (arrow) has a tail, called its initial point, and a tip, called its terminal point. The length of the arrow 

equals the distance between initial point and terminal point (Fig 3.1). This is called the length (or magnitude) 

of the vector a and is denoted by |𝑎|. Another name for length is norm (or Euclidean norm). A vector of 

length 1 is called a unit vector.  
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Fig 3.2: The velocity vector of a particle moving along a path (a) in the plane (b) in space.  
The arrowhead on the path indicates the direction of motion of the particle.  

Fig 3.1: The directed line segment 𝐴𝐵⃗⃗⃗⃗  ⃗ is called a vector 
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Equality of Vectors - Two vectors a and b are equal, written, if they have the same length and the same 

direction as shown in Fig. 3.3.   

 

Fig. 3.3 (A) Equal Vectors. (B) – (D) Different Vectors  

3.2.1 COMPONENTS OF A VECTOR  

Let a be a given vector with initial point P: (x1, y1, z1) and terminal point Q: (x2, y2, z2). Then the three 

coordinate differences  

  

 

are called the components of the vector a with respect to that coordinate system, and we write simply   

a = [a1, a2, a3]. See Fig 3.4 (a). The length |𝑎| of a can now readily be expressed in terms of components and 

the Pythagorean Theorem we have  

 

A Cartesian coordinate system being given, the position vector r of a point A: (x, y, z) is the vector with the 

origin (0, 0, 0) as the initial point and A as the terminal point (See Fig 3.4 (b)).   
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Fig 3.4 (a) Components of a vector (b) Position vector r of a point A: (x, y, z) 

Example 3.1 

 

Exercises 

Let u= 3𝑖 − 2𝑗 and = −2𝑖 + 5𝑗 . Find the (a) component form and (b) magnitude (length) of the 

vector.  

 

 

 

 

a) b) 
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3.2.2 VECTOR ADDITION, SCALAR MULTIPLICATION  

 

Two principal operations involving vectors are vector addition and scalar multiplication.  A scalar is simply a 

real number, and is called such when we want to draw attention to its differences from vectors. Scalars can 

be positive, negative, or zero and are used to “scale” a vector by multiplication. 

 

Geometrically, place the vectors as in Fig. 3.5 (the initial point of b at the terminal point of a); then a + b is 

the vector drawn from the initial point of a to the terminal point of b. Fig. 3.5 also shows (for the plane) that 

the “algebraic” way and the “geometric way” of vector addition give the same vector.  

 

                     Fig 3.5 Vector Additions 

 

Basic Properties of Vector Addition 
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Properties (a) and (b) are verified geometrically in Fig. 3.6 and Fig 3.7, respectively. Furthermore, -a denotes 

the vector having the length |𝒂| and the direction opposite to that of a.  

 

          Fig 3.6 Commutativity of vector addition   Fig 3.7 Associativity of vector addition  

 

Geometrically, if a ≠ 0 then ca with c > 0 has the direction of a and with c < 0 the direction opposite to a. In 

any case, the length of ca is |𝑐𝒂| = |𝑐| |𝒂|, and ca = 0 if a = 0 or c = 0 (or both) (See Fig 3.8).  

 

           Fig 3.8 Scalar multiplication [multiplication of vectors by scalars (numbers)]  

Basic Properties of Scalar Multiplication 

From the definitions we obtain directly: 
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Example 3.2 

 

Exercises 

 

3.2.3 UNIT VECTOR  

 

A vector v of length 1 is called a unit vector.  In this representation, i, j, k are the unit vectors in the positive 

directions of the axes of a Cartesian coordinate system. The standard unit vectors are  

𝑖 = 〈1, 0, 0〉,      𝑗 = 〈0,1,0〉     𝑘 = 〈0, 0,1〉 

Any vector can be written as a linear combination of the standard unit vectors as follows:  

𝑣 = 〈𝑣1,𝑣2, 𝑣3〉 = 〈𝑣1,0, 0〉 + 〈0,𝑣2, 0〉 + 〈0, 0, 𝑣3〉 
 

  = 𝑣1〈1,0,0〉 + 𝑣2〈0, 1, 0〉 + 𝑣3〈0, 0,1〉 

        𝑣 = 𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘 

From Figure 3.9, we call the scalar (or number) v1 the i-component of the vector v, v2 the j-component, and 

v3 the k-component. In component form, the vector from P1(x1, y1, z1) to P2(x2, y2, z2) is   

𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑥2 − 𝑥1)𝑖 + (𝑦2 − 𝑦1)𝑗 + (𝑧2 − 𝑧1)𝑘 
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                        Fig. 3.9 The vector from P1 to P2 is 𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

Whenever v , its length |𝑣| is not zero and  

|
1

|𝑣|
𝑣| =  

1

|𝑣|
|𝑣| = 1 

That is, 𝑣⁄|𝑣| is a unit vector in the direction of v, called the direction of the nonzero vector v. 

 

Example 3.3 

 

 

In summary, we can express any nonzero vector v in terms of its two important features, length and direction, 

by writing  
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Example 3.4 

 

***PROVE that the length of unit vector is 1.   

 

3.3 VECTOR IN SPACE 

3.3.1 Cartesian coordinates of a vector in 2D space & its polar expressions 

 

(a) Definition of a 2D vector 

Let 𝑂 be the origin and let 𝑂𝑥 and 𝑂𝑦 be two mutually perpendicular coordinate axes. 

Then, the plane containing 𝑂𝑥 and 𝑂𝑦 is called the xy-plane or the xy-coordinate system and 𝑂𝑥 is called the 

𝑥 axis and 𝑂𝑦 is 𝑦 axis. 

 

The vector 𝑖̰̇ is the vector from the origin 𝑂 to the point (1,0). 

The vector 𝑗̰̇ is the vector from the origin 𝑂 to the point (0,1). 

 

Note: 𝑖̰̇ and 𝑗̰̇ are unit vectors and also position vectors.  
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Any vector �̰�  in xy-plane can be represented by �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇  or �̰� = ⟨𝑎, 𝑏⟩ where 𝑎 and 𝑏 are scalars. The 

scalars 𝑎 and 𝑏 are called the components of the vector �̰� with respect to that coordinate system.  

The vector ai  and vector 𝑏𝑗̰̇ are called the vector components in the direction of 𝑖̰̇ and 𝑗̰̇, respectively. 

Notation: 

(i) The vector �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ can be denoted by �̰� = ⟨𝑎, 𝑏⟩ 

(ii) The point 𝑃 at (𝑎, 𝑏) can be denoted by (𝑎, 𝑏), 𝑃 (𝑎, 𝑏) or 𝑃 = (𝑎, 𝑏) 

(iii) Note that (𝑎, 𝑏) ≠ ⟨𝑎, 𝑏⟩ to avoid confusion. (𝑎, 𝑏) represent coordinates of a point. ⟨𝑎, 𝑏⟩ 

represent components of a vector. 

 

(b) Vector Algebra of a 2D vector 

Let �̰�1 = 𝑎1𝑖̰̇ + 𝑏1𝑗̰̇  and �̰�2 = 𝑎2𝑖̰̇ + 𝑏2𝑗̰̇ be two vectors. Then 

(i) �̰�1 = �̰�2 >>     Then,  𝑎1 = 𝑎2; 𝑏1 = 𝑏2 

(ii) �̰�1 + �̰�2 >>      Then,  (𝑎1 + 𝑎2)𝑖̰̇ + (𝑏1 + 𝑏2)�̰̇� 

(iii) �̰�1 − �̰�2 >>       Then,  (𝑎1 − 𝑎2)𝑖̰̇ + (𝑏1 − 𝑏2)𝑗̰̇ 

(iv) Let 𝛼 is a scalar, then 𝛼�̰�1 = (𝛼𝑎1)𝑖̰̇ + (𝛼𝑏1)𝑗̰̇ 

 

(c)  Theorem of an arbitrary vector in 2D space 

Let 𝑃 and 𝑄 be the points (𝑎1, 𝑏1) and (𝑎2, 𝑏2) respectively. Then, the vector 𝑃𝑄
→  

 is given by  

𝑃𝑄
→  

= 𝑂𝑄
→  

− 𝑂𝑃
→  

= ⟨(𝑎2 − 𝑎1), (𝑏2 − 𝑏1)⟩ 
 
Proof:  

Let 𝑂𝑃
→  

= ⟨𝑎1, 𝑏1⟩, 𝑂𝑄
→  

= ⟨𝑎2, 𝑏2⟩ 

𝑃𝑄
→  

= 𝑂𝑄
→  

− 𝑂𝑃
→  

= ⟨(𝑎2 − 𝑎1), (𝑏2 − 𝑏1)⟩ 

 

 

(d) Magnitude & Angle of a vector in 2D space 

Let �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ be a 2D vector. 

(i) The magnitude of �̰� is defined as |�̰�| = √𝑎2 + 𝑏2 

(ii) The angle between �̰� and a line parallel to the x-axis is defined as 𝜃 = 𝑡𝑎𝑛−1
𝑏

𝑎
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Hint: Identify the quadrant; 𝜃 is positive if it is measured in the direction of anti-clockwise; 𝜃 is negative if it 

is measured in the direction of clockwise. 

(e) Transformation of Cartesian form of a 2D vector to polar form 

By using magnitude and angle of a vector, the Cartesian form of a vector (i.e., �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ ) can be 

transformed into polar form (i.e., �̰� = |�̰�|⏟
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

(𝑐𝑜𝑠( 𝜃⏟
𝑎𝑛𝑔𝑙𝑒

)�̰̇� + 𝑠𝑖𝑛( 𝜃⏟
𝑎𝑛𝑔𝑙𝑒

)𝑗̰̇) 

 

Thus, we have �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇⏟    
𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑑𝑜𝑚𝑎𝑖𝑛

= |�̰�|(𝑐𝑜𝑠( 𝜃)𝑖̰̇ + 𝑠𝑖𝑛( 𝜃)𝑗̰̇)⏟              
𝑃𝑜𝑙𝑎𝑟 𝑑𝑜𝑚𝑎𝑖𝑛

  

 

Exercise  

(i)  Let �̰�, �̰� and �̰� be position vectors of the points 𝑈 (2,3), 𝑉 (1,5) and 𝑊 (3,−4), respectively. Find 

(a) �̰� = �̰�  −  2�̰� + 3�̰� 

(b) the magnitude of �̰� 

(c) the angle between �̰� and 𝑂𝑥 

(d) transform the vector �̰� from Cartesian domain into Polar domain 

(e) compare the result in (a) and (d), explain your finding and relate this in the application of engineering. 

(ii)   Determine the unit vector in the direction of �̰� = 2𝑖̰̇  −  3𝑗̰̇ 

(iii) Find the unit vector from the point 𝑃 (1,4) to the point 𝑄 (3,−5) 

(iv) Find a vector of magnitude 3 in the direction of �̰� = −𝑖̰̇ + 3𝑗̰̇ 

 

3.3.2 Cartesian coordinates of a vector in 3D space (Volume) & its polar expression 

 

(a) Definition of a 3D vector 

Let 𝑂 be the origin and let 𝑂𝑥 , 𝑂𝑦 and 𝑂𝑧 be three mutually perpendicular coordinate axes. 

Then, the plane containing 𝑂𝑥 , 𝑂𝑦 and 𝑂𝑧 is called the xyz-plane or the xyz-coordinate system (Follow right 

hand rule) and 𝑂𝑥 is called the 𝑥 axis, 𝑂𝑦 is 𝑦 axis and 𝑂𝑧 is 𝑧 axis. 
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The vector 𝑖̰̇  is the vector from the origin 𝑂 to the point 

(1,0,0). 

The vector 𝑗̰̇  is the vector from the origin 𝑂 to the point 

(0,1,0). 

The vector �̰�  is the vector from the origin 𝑂 to the point 

(0,0,1). 

Note: 𝑖̰̇, 𝑗̰̇ and �̰� are unit vectors and also position vectors. 

Any vector �̰�  in xyz-plane can be represented by �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ + 𝑐�̰�  or �̰� = ⟨𝑎, 𝑏, 𝑐⟩  where 𝑎 , 𝑏and 𝑐  are 

scalars. The scalars 𝑎, 𝑏 and 𝑐are called the components of the vector �̰� with respect to that coordinate 
system.  

The vector 𝑎𝑖̰̇  , vector 𝑏𝑗̰̇  and vector 𝑐�̰� are called the vector components in the direction of 𝑖̰̇ ,𝑗̰̇ and �̰� 

respectively. 

Notation: 

(i) The vector �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ + 𝑐�̰� can be denoted by �̰� = ⟨𝑎, 𝑏, 𝑐⟩ 

(ii) The point 𝑃 at (𝑎, 𝑏, 𝑐) can be denoted by (𝑎, 𝑏, 𝑐), 𝑃(𝑎, 𝑏, 𝑐) or 𝑃 = (𝑎, 𝑏, 𝑐) 

(iii) Note that (𝑎, 𝑏, 𝑐) ≠ ⟨𝑎, 𝑏, 𝑐⟩  to avoid confusion. (𝑎, 𝑏, 𝑐)  represent coordinates of a point. 

⟨𝑎, 𝑏, 𝑐⟩ represent components of a vector. 

 

(b) Vector Algebra of a 3D vector 

Let �̰�1 = 𝑎1𝑖̰̇ + 𝑏1𝑗̰̇ + 𝑐1�̰� and �̰�2 = 𝑎2𝑖̰̇ + 𝑏2𝑗̰̇ + 𝑐2�̰� be two vectors. Then 

(i) �̰�1 = �̰�2 >>     Then,  𝑎1 = 𝑎2; 
1 2=b b ; 

1 2=c c  

(ii) �̰�1 + �̰�2 >>      Then,  (𝑎1 + 𝑎2)𝑖̰̇ + (𝑏1 + 𝑏2)�̰̇� + (𝑐1 + 𝑐2)�̰� 

(iii) �̰�1  −  �̰�2 >>       Then,  (𝑎1 − 𝑎2)𝑖̰̇ + (𝑏1 − 𝑏2)𝑗̰̇ + (𝑐1 − 𝑐2)�̰� 

(iv) Let 𝛼is a scalar, then 𝛼�̰�1 = (𝛼𝑎1)𝑖̰̇ + (𝛼𝑏1)𝑗̰̇ + (𝛼𝑐1)�̰� 
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(c)  Theorem of an arbitrary vector in 3D space 

Let 𝑃 and 𝑄 be the points (𝑎1, 𝑏1, 𝑐1) and (𝑎2, 𝑏2, 𝑐2) respectively. Then, the vector 𝑃𝑄
→  

 is given by  

𝑃𝑄
→  

= 𝑂𝑄
→  

− 𝑂𝑃
→  

= ⟨(𝑎2 − 𝑎1), (𝑏2 − 𝑏1), (𝑐2 − 𝑐1)⟩ 

 

Proof:  

Let 𝑂𝑃
→  

= ⟨𝑎1, 𝑏1, 𝑐1⟩, 𝑂𝑄
→  

= ⟨𝑎2, 𝑏2, 𝑐2⟩, 

𝑃𝑄
→  

= 𝑂𝑄
→  

− 𝑂𝑃
→  

= ⟨(𝑎2 − 𝑎1), (𝑏2 − 𝑏1), (𝑐2 − 𝑐1)⟩ 

 

 

(d) Magnitude & Angle of a vector in 3D space 

Let �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ + 𝑐�̰� be a 3D vector and let 𝛼, 𝛽, and 𝛾 be the direction angles of �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ + 𝑐�̰� 

 

The magnitude and angle that define vector �̰� can be obtained as following: 

(i) The magnitude of �̰� is defined as |�̰�| = √𝑎2 + 𝑏2 + 𝑐2 
 

(ii) The angle between �̰� and a line parallel to the x-axis is defined as 𝛼 = 𝑐𝑜𝑠−1
𝑎

|�̰�|
;  

The angle between �̰� and a line parallel to the y-axis is defined as 𝛽 = 𝑐𝑜𝑠−1
𝑏

|�̰�|
; 

The angle between �̰� and a line parallel to the z-axis is defined as 𝛾 = 𝑐𝑜𝑠−1
𝑐

|�̰�|
. 

 

(e) Transformation of Cartesian form of a 3D vector to polar form 
By using magnitude and angle of a vector, the Cartesian form of a vector �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ + 𝑐�̰�  can be 

transformed into polar form �̰� = |�̰�|(𝑐𝑜𝑠 𝛼 𝑖̰̇ + 𝑐𝑜𝑠 𝛽 𝑗̰̇ + 𝑐𝑜𝑠 𝛾 �̰�). 

Thus, we have 𝑣 = �̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ + 𝑐�̰� = |𝑣| (𝑐𝑜𝑠 𝛼 𝑖
~
+ 𝑐𝑜𝑠 𝛽 𝑗

~
+ 𝑐𝑜𝑠 𝛾 𝑘

~
) 

 

(f) Important remarks for polar form of a 3D vector 

(i) The unit vector �̰� is 
�̰�

|�̰�|
= (𝑐𝑜𝑠 𝛼 𝑖̰̇ + 𝑐𝑜𝑠 𝛽 𝑗̰̇ + 𝑐𝑜𝑠 𝛾 �̰�) or ⟨𝑐𝑜𝑠 𝛼 , 𝑐𝑜𝑠 𝛽 , 𝑐𝑜𝑠 𝛾⟩ 

(ii) Magnitude of a unit vector, �̰� is 1. Thus, we get 𝑐𝑜𝑠2 𝛼 + 𝑐𝑜𝑠2 𝛽 + 𝑐𝑜𝑠2 𝛾 = 1 
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(iii) The direction angles of negative vector, -�̰� are 𝜋 − 𝛼, 𝜋 − 𝛽, 𝜋 − 𝛾 
(iv) Have a clear definition for the following term: 

 

Direction angles Direction cosines Direction ratio 

𝛼 ,𝛽, and 𝛾are called the 
direction angles of �̰� 

𝑐𝑜𝑠 𝛼 , 𝑐𝑜𝑠 𝛽,  and 𝑐𝑜𝑠 𝛾  are 
called the direction cosines of v  

The ratios 𝑎: 𝑏: 𝑐  is called 
the direction ratio of �̰�  

For polar coordinate 
�̰� = |�̰�|(𝑐𝑜𝑠 𝛼 𝑖̰̇ + 𝑐𝑜𝑠 𝛽 𝑗̰̇ + 𝑐𝑜𝑠 𝛾 �̰�) 

For Cartesian coordinate 
�̰� = 𝑎𝑖̰̇ + 𝑏𝑗̰̇ + 𝑐�̰� 

Additional remarks: 

(i) If 𝑐𝑜𝑠2 𝛼 + 𝑐𝑜𝑠2 𝛽 + 𝑐𝑜𝑠2 𝛾 ≠ 1, then there does exist a unit vector with the direction cosines 

⟨𝑐𝑜𝑠 𝛼 + 𝑐𝑜𝑠 𝛽 + 𝑐𝑜𝑠 𝛾⟩.  

Note: because unit vector has magnitude of 1. 

(ii) Two vectors �̰� and �̰� have the same direction cosines if and only if they have the same 

direction.  

Note: Different direction cosines shows different directions. 

(iii) Two vectors �̰� and �̰� have the same direction ratios if and only if they are parallel (i.e. �̰� and �̰� 

are in the same direction or in opposite directions).  

Note: As explained by the scalar multiplication and parallel vector. 

Exercise  

 
Let 𝑢, 𝑣 and 𝑤 be position vectors of the points 𝑈 (2,3,1), 𝑉 (0, −5,1) and 𝑊(−3,0,0), respectively. Find 

(i) �̰� = �̰�  −  2�̰� + 3�̰� 

(ii) transform �̰� from Cartesian domain (i.e., 𝑎𝑖̰̇ + 𝑏𝑗̰̇ + 𝑐�̰�) to Polar domain (i.e.,𝑟 (𝑐𝑜𝑠 𝛼 𝑖̰̇ + 𝑐𝑜𝑠 𝛽 𝑗̰̇ +

𝑐𝑜𝑠 𝛾 �̰�) where 𝑟 is its magnitude. 

(iii) the angle between �̰� and 𝑂𝑥 

(iv) direction cosines of �̰� in three directions 𝑖̰̇,𝑗̰̇ and �̰�. 

(v) unit vector of �̰� 

(vi) If given direction angle as following, can you identify whether the vector with the following direction 

cosine (𝑐𝑜𝑠 𝛼 𝑖̰̇ + 𝑐𝑜𝑠 𝛽 𝑗̰̇ + 𝑐𝑜𝑠 𝛾 �̰�) is exist or not? 

 ------  vector �̰� has direction angle 𝛼,𝛽, and 𝛾 of (𝜋/4,2𝜋/3, 𝜋/3). 

 ------  vector �̰� has direction angle 𝛼,𝛽, and 𝛾 of (𝜋/2, 𝜋/3, 𝜋/3). 



15 
 

(vii) Find the direction cosines of negative vector −�̰�. Then find the relationship between the 

direction cosines of vector �̰� and −�̰�. 

 

3.4 GRADIENT, DIVERGENCE, CURL OF VECTOR FIELD   

3.4.1 GRADIENT OF VECTOR FIELD  

Using scalar fields instead of vector fields is of a considerable advantage because scalar fields are easier to 

use than vector fields. It is the “gradient” that allows us to obtain vector fields from scalar fields, and thus 

the gradient is of great practical importance to the engineer. Gradients are useful in several ways, notably in 

giving the rate of change of in any direction in space, in obtaining surface normal vectors, and in deriving 

vector fields from scalar fields.  

 
The notation ∇𝑓 is suggested by the differential operator ∇ (read nabla) defined by   

 
Example 3.5 

If 𝑓(𝑥, 𝑦, 𝑧) = 2𝑦3 + 4𝑥𝑧 + 3𝑥   , then 𝒈𝒓𝒂𝒅 𝒇 = [4𝑧 + 3, 6𝑦2, 4𝑥]  

 

Exercises 

Find the gradient of the following function at the given point.  

  

(a) 𝑓(𝑥, 𝑦) = ln(𝑥2 + 𝑦2) at point (1, 1)  

(b) 𝑓(𝑥, 𝑦) = √2𝑥 + 3𝑦 at point (-1, 2)  

 

  
  

  𝑟𝑎    𝑓 =   ∇ 𝑓 =   [ 
 𝑓 

 𝑥 
,       
 𝑓 

 𝑦 
,       
 𝑓 

 𝑧 
] =   

 𝑓 

 𝑥 
𝑖 +   

 𝑓 

 𝑦 
𝑗 +   

 𝑓 

 𝑧 
𝑘   
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3.4.2 DIRECTIONAL DERIVATIVES  

From gradient we know that the partial derivatives give the rates of change of f(x, y, z) in the directions of 

the three coordinate axes. It seems natural to extend this and ask for the rate of change of in an arbitrary 

direction in space. This leads to the concept of directional derivative.  

 
 

 
           Fig. 3.10 Directional Derivative (Refer to above Equation) 

 

The above equation can be derived into 
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The notation ∇𝑓 is read “grad ƒ” as well as “gradient of ƒ” and “del ƒ.” The symbol ∇ by itself is read “del.” 

Another notation for the gradient is grad ƒ.  

 

 
 

Example 3.6 

 

 

 

 

 
 

Example 3.7 

 

 



18 
 

 
 

Exercises 

Find the derivative of the function at Po in the direction of u  

(a)  (𝑥, 𝑦) =
𝑥−𝑦

𝑥𝑦+2
 , 𝑃𝑜(1, −1),𝑢 = 12𝑖 + 5𝑗   

(b) ℎ(𝑥, 𝑦, 𝑧) = cos 𝑥𝑦 + 𝑒𝑦𝑧 + ln(𝑧𝑥) ,  𝑃𝑜(1, 0, 1/2),   𝑢 = 1𝑖 + 2𝑗 + 2𝑘   

(c) ℎ(𝑥, 𝑦, 𝑧) = 3𝑒𝑥cos𝑦𝑧 ,  𝑃𝑜(0, 0, 0),   𝑢 = 2𝑖 + 𝑗 − 2𝑘  

 

3.4.3 DIVERGENCE OF VECTOR FIELD  

From a scalar field we can obtain a vector field by the gradient. Conversely, from a vector field we 

can obtain a scalar field by the divergence or another vector field by the curl. 

To begin, let 𝑣(𝑥, 𝑦, 𝑧) be a differentiable vector function, where x, y, z are Cartesian coordinates, 

and let 𝑣1,𝑣2, 𝑣3 be the components of v. Then the function  

  𝑖𝑣 𝑣 =  
𝜕𝑣1

𝜕𝑥
+ 

𝜕𝑣2

𝜕𝑦
+ 

𝜕𝑣3

𝜕𝑧
 

is called the divergence of v or the divergence of the vector field defined by v. For example, if  
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𝑣 = [3𝑥𝑧, 2𝑥𝑦, −𝑦𝑧2] = 3𝑥𝑧𝑖 + 2𝑥𝑦𝑗 − 𝑦𝑧2𝑘  
 Then  

 𝑖𝑣 𝑣 = 3𝑧 + 2𝑥 + 2𝑦𝑧  

Another common notation for the divergence is  

 

With understanding that the “product” (
𝜕

𝜕𝑥
) 𝑣1 in the dot product means the partial derivative 

𝜕𝑣1

𝜕𝑥
, etc. This 

is a convenient notation, but nothing more. Note that 𝛁.𝒗 means the scalar div v, whereas 𝛁𝒇 means the 

vector grad f.  

Example 3.8 

 

*Div F is a scalar field.  

Let us turn to the more immediate practical task of gaining a feel for the significance of the divergence. Let 

f(x, y, z) be a twice differentiable scalar function. Then, its gradient exists  

 

and we can differentiate once more, the first component with respect to x, the second with respect to y, the 

third with respect to z, and then form the divergence,  

 

Hence, we have the basic result that the divergence of the gradient is the Laplacian                                                                                          
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Exercises 

1) Find divergence from the gradient, div (grad f)  

(a) 𝑓 = 𝑒𝑥𝑦𝑧   

  

2) Find div v and its value at P  

(a) 𝑣 = 𝑥2𝑖 + 4𝑦2 + 9𝑧2 at P (-1, 0, ½)   

(b) 𝑣 = cos 𝑥𝑦𝑧 + sin 𝑥𝑦𝑧  

 

3.4.4 CURL OF VECTOR FIELD  

Let 𝑣(𝑥, 𝑦, 𝑧) = [𝑣1,𝑣2, 𝑣3] = 𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘  be a differentiable vector function of the Cartesian coordinates x, 

y, z. Then the curl of the vector function v or of the vector field given by v is defined by the “symbolic” 

determinant  

 

This is the formula when x, y, z are right-handed. If they are left-handed, the determinant has a minus sign 

in front. Instead of curl v one also uses the notation rot v or rotation of v.   

Example 3.9 
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Example 3.10 

 

 

*Curl F is a vector field.  

 

 
 

Exercises 

Compute the curl of the following vector field: 

a) 𝑓(𝑥, 𝑦, 𝑧) =< 𝑒𝑥 cos𝑦 , 𝑒𝑥 sin 𝑦, 0 >   

b) 𝑓(𝑥, 𝑦, 𝑧) = 
2𝑥𝑦

𝑧
  𝑖 + 𝑥𝑒𝑥𝑦 𝑗 + cos(𝑥𝑦2)𝑘  

c) 𝑓(𝑥, 𝑦, 𝑧) = (𝑥𝑦𝑧)𝑖 + (𝑥2 + 2𝑦𝑧)𝑗 + (𝑥2 + 𝑦2 + 𝑧2)𝑘  
  




