ENGINEERING APPLICATIONS OF VECTOR
ALGEBRA AND VECTOR ANALYSIS

WEEK 5: ENGINEERING APPLICATIONS OF VECTOR ALGEBRA AND VECTOR ANALYSIS

5.1 ENGINEERING APPLICATION: VECTOR ALGEBRA

5.1.2 HEAD TO TAIL METHOD

Example 5.1:

1. A 200 kg cylinder is hung by means of two cables AB and AC, which are attached to the top of a vertical

wall. A horizontal force P perpendicular to the wall holds the cylinder in the position shown below.

(i) Find the coordinate of position A, B and Cand their position vectors based on the axis given in
the diagram above.

(ii) Identify all the force vectors acting on pointA. (Assume g = 9.81ms™2)

(iii) Determine the resultant of forces acting on point A using head to-tail method.
(iv) Assume the system is in static, determine the magnitude of P and the tension in each cable.
Solution:

In this example, you should be able to solve 3D engineering problem using vector. Hint: imagine 3D object

and translate it in the point point (i.e. A = (1,2,3)) , B = (2,3,4) and vector form (i.e. position vector ﬁ =
— — —

(1,2,3), 0A = (2,3,4) and arbitrary vector AB = (1,1,1), BA = (—1,—1,-1))

(i) Find the coordinate of position A, B and C and their position vectors based on the axis given in the diagram.

A=(0,1.2,2), B = (8,0,12), C = (—10,0,12)
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— — —
04 = (0,1.2,2), 0B = (8,0,12), 0C = (—10,0,12)

(ii) Identify all the force vectors acting on point A. (Assume g = 9.81ms™?)

Horizontal force P, & its vector P = (0, P, 0) (note it has magnitude P in y direction)
Vertical force 200 kg cylinder, and its vector W = (0,0, —1962N) (note it has magnitude 1962N in

negative z direction)

TA_B 4B

Magnitude Direction vector

)
Tension cable AB, and its vector

—
The magnitude is unknown (Precaution: the magnitude of vector |AB| is not equal to the magnitude

1

of tension |T,z|)
A
—

The direction vector (unit vector) is the same as the unit vector of AB

AB=0B-04=(8.0.12)-(0.1.2,2) =(8.-1.2.10)

A

(8,-12.10)  (8.-1.2.10)

AB = - =(0.6220,-0.09330,0.7775
(82 +(-1.2)> +10° J165.44 < | )
T,= [T, T, = ‘Tw‘ AB= ’T;B’(O.6220_, 10.09330,0.7775)

Magnitude Direction vector

TAC

TAC

Magnitude Direction vector

Tension cable AC, & its vector T, =

AC=0C-04=(-10,0,12)-(0,1.2,2)=(-10,-1.2,10)

AC= Ll0-1210) __{10.1210) =(-0.7046,-0.08455,0.7046)
- JEoy 12100 V20144 TR
T, = T_{;’ T, =’TA'C AC =T .|(-0.7046,-0.08455,0.7046)

Magnitude Direction vector
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(iii) Determine the resultant of forces acting on point A using head to-tail method.

A
~
Ac)
halis .f! E)
o ——— = =
el — |
4B T‘f\ P AC /! I
i !
0 / W
v A Resultant iR T
>>>

The resultant of force is the addition of vectors AB, AC, P,and W where

Resultant, X F

T,|(-0.7046. -0.03455,o.?046)+|113‘(0.6220, -0.09330,0.7775)+(0, P.0)+(0.0,-1962N)

TAC’

= <{-D.?{}46 +0.6220|T43‘},{-0.08455 Ty T _1962N

- 0.09330‘1;3‘ + P}, {0.7046

+0.??75‘T;3

(iv) Assume the system is in static, determine the magnitude of P and the tension in each
cable.

Since the object is in equilibrium, hence the resultant of force at point 4 must be equal to

zero, LF =0

({{:_?045 T,0|+0.6220 Tﬁ|}, {-0.08455|T . -0_0933G|T;3 + P}, {0.7046|T |+ o_???5|r;a‘ —1962N}> =0
LF =0
. , | 0.6220] -
{-0.7046|T . +o_5220‘rﬂ|}=9 >5> Ty ZM‘TM“
LF =0
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0.6220| - - :
0.7046 Ts)+0.7775|T,5|-1962N =0 >>>|T,,| =1401.93N
o rap+07773[r,| A
0.6220
Toel= (1401.93) =1237.58N
0.7046
IF,=0
-0.08455|T -0.09330‘Tﬂ‘+13= 0 >>>
P=23544N

5.1.2 ENGINEERING APPLICATION: VECTOR IN 3 D SPACE

Example 5.2:

The wire AE, L is stretched between the corners A and E of a bent plate. The wire BF, L, is stretched
between the position B and F. The wire BG, L is stretched between the position B and G. The wire OA, L, is

stretched between the position O and A.

2

s
90 mm_ |

-—

120 mm

160 mm

C

120 min

(i) Find the vector equation of line for wire AE, BF, BG and OA. Hence find the intersection point between

line Ly with L, ; line L3 with Lyseparately if exist.

(i) Find the equation of plane for S; from point 0, A & B and equation of plane for S, from point E, F and

G if possible. Hence find the intersection line between §; and S, if exist.
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(iii) Given the intersection point between L; & L; is P(60, 15, 80). Find the shortest distance between

intersection point L; & L3 and plane S; and plane S, respectively.

Solution:
(i)
Vector equation of line for wire BF
Point B=(0,120,160) and F =(120,0,0)
Position vector, OB =(0,120,160), OF ={(120,0.0)

Vector BF = OF - OB ={120.0,0)-(0.120,160) = {120,-120.-160)

L, = OB +1BF =(0,120.160) +#(120.-120.-160)

Vector equation of line for wire BG

Point B = (0,120,160) and G = (120,-90,0)

Position vector, OB ={0,120,160), 0G = (120,-90,0)

Vector BG = 0G-0B =(120,-90.0)-(0.120,160) = {120,-210,-160)
L, = 0OB+uBG =(0.120,160) +2(120,-210,-160)

Vector equation of line for wire AE

Point 4= (0,-90,160) and E = (120,120,0)

Position vector, 04 =(0,-90,160), OF ={120,120,0)

Vector AE =OE-04=(120.120.0)-(0.-90.160) = (120,210.-160)

I, = 04+s4E =(0,-90,160) + 5(120,210,-160)
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Vector equation of line for wire OA

Point O =(0,0,0) and 4 = (0,-90,160)

Position vector, GO=(U,D,0), 04= (U,-Qﬂ.lﬁﬂ)

Vector 04 =04-00 =(0,-90,160)-{0,0,0) = (0,-90,160)

L, = 00+v04={0.0,0)+v{0.-90,160) = v{0,-90.160)

To check existence of intersection point between L1 & L2:

I, = 04+ sAE ={0,-90,160) + s{120,210,-160)

L, = 0B +sBF =(0.120.160)+#{120.-120.-160)

{‘I:

I"I\.l

(0.-00,160) +5(120.210,-160} = {0.120.160) + #{120.-120,-160)
1208 =120 55> §={ —-owommmmmmemm (1)

160-1605 =160-160f >>> §=f -owemmmmmmrmem oo eeee (2

-90+2105=120-120¢ >>
-330

-210
LHS :-90+210(—=)=43.6364
(-330)
-210
RHS :120-120(———) = 43.6364
-330

LHS = RHS
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There is intersection point between L1 & L2.
L =1L
= (ﬂ.-gﬁ.160)+£{1zﬂ.21:::.-1613)
.=90. 330 120210,
210
=(0.120,160) +=——(120,-120,-160)
330
=(76.3636 43.6364 58.1818)

The intersection point is at (?6.3636,43.6364.58.1818 )

To check existence of intersection point between L3 & L4:

L, = OB+uBG=(0.120.160)+{120,-210,-160)

L, = 00+v04={0,0,0)+v(0,-90.120) = v{0,-90,120)
L, =1L,

(0.120,160)+u(120,-210,-160) = v{0.-90,160)
1200=0 >>> u=1(

120-210u =-90v >>> v=-%}

160-160u = 160v
LHS :160-160(0) = 160
RHS :160(-%4) = -213.33
LHS = RHS

There is no intersection point between L3 & L4.
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(ii)
To form equation of plane for &, , we need three points located on the plane:
Point 4= (0.-90,160)
Point B =(0,120,160)
Point O=(0,0,0)
The format for equation of plane: ax+by+ ¢z =k where the normal vector to the plane is

{aj,c}

i j k

Normal vector to the plane = OAxOB=|0 90 160| = {—336[IEI,{LU}
0 120 160

Hence we get, ax+by+cz=Fk »>> 33600x+0y+0z=F >>= k=-33600x

From the point located on §,, i.e., point @, 4 and B . All the component at x direction is 0.

Sub to the equation we get & = -33600x =0; Thus, the plane of equation is -33600x=10
which can be simplify to x=0

Note: normal vector {-33600,0,0) is parallel to {1,0,0)

To form equation of plane for §,, we need three points located on the plane:
Point £=(120,120,0)
Point F =(120,0,0)

Point G = (120,-90,0)

The format for equation of plane: ax+ by +cz =k where the normal vector to the plane is

I'.:aj,c}
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ij ok
Normal vector to the plane = EFxEG=10 -120 0| = {ﬂ,ﬂ,ﬂ}
0 -210 0

The normal vector is a zero vector, this result is invalid because the points that we selected
to form a plane must be non-parallel. Note that we can’t find the normal vector by using cross

product of parallel vectors as v, xv, =

L

¥y

==

sin »7 =0 However, in this case, the vector EF

and EG are in parallel. Therefore, it is impossible to use the selected points to calculate the
plane of equation.

Thus a new point @ =(0,0,0) is selected to avoid this issue.

i ]k
Normal vector to the plane = OExOF = [120 120 0| = {0.0.-14400)
120 0 0

Hence we get, ax +by+cz=Fk »>> Ox+0y-14400z =k >>> k=-14400z

From the point located on §,, i.e., point @, E and F . All the component at z direction is 0.

Sub to the equation we get & =-14400z = 0; Thus, the plane of equation is -14400z=0
which can be simplifyto z=0

Note: normal vector {D,{};ILHUU} is parallel to {EI, [Ll}
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(iif)

Equation of plane for S, is x=0 while S, is z=0. The normal vector to plane §, is (l,ﬂ,ﬂ') and

normal vector to plane S, is {0,0,1)

Thus, the arbitrary point at plane §, is (X }FO) while arbitrary point at plane S is (0 yz)

Let point M = (110) located on plane §, while point N = (0 11) located on plane §;

MP=0P-OM =(601580)-(1 1 0)=(59 14 80)

Shortest distance between intersection point L, & L, and plane S, is

‘A@.(D 0 1}‘ = (59 14 80).{0 0 1)| = 80unit

NP=0P-ON=(601580)-(0 1 1)=(6014 79)

Shortest distance between intersection point L, & L, and plane §, is

‘f{m (10 0}‘ =|(60 14 79).{1 0 0)| = 60unir

55



WEEK 5: ENGINEERING APPLICATIONS OF VECTOR ALGEBRA AND VECTOR ANALYSIS

5.2 ENGINEERING APPLICATION: VECTOR ANALYSIS

5.2.12 NAVIGATION

The word problems encountered most often with vectors are navigation problems. These navigation
problems use variables like speed and direction to form vectors for computation. Some navigation problems
ask us to find the groundspeed of an aircraft using the combined forces of the wind and the aircraft. For
these problems it is important to understand the resultant of two forces and the components of force.

Each of the three vectors in the triangle of velocities has two properties — magnitude and direction. This
means that there are a total of six components. These are the True Air Speed (TAS) and heading (HDG) of
the aircraft, the speed and direction of the wind (W/V), and the Ground Speed (GS) and track (TR) of the
path over the ground. This is shown in Figure 5.1.

"‘\ Wind-Track
— Angle
Heading
+
TAS
y Track

-+

Ground Speed

"~ Drift Angle

Final Position

i -
_.~—" Course /
-~ and Groundspeed

Wind
Direction
and
Velocity,

Figure 5.1: Triangle of Vectors (Velocities)
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To summarize:

Course—the direction of a line drawn on a chart representing the intended airplane path, expressed
as the angle measured from a specific reference datum clockwise from 0° through 360° to the line.
Heading—is the direction in which the nose of the airplane points during flight.

Drift angle—is the angle between heading and track.

Airspeed—is the rate of the airplane’s progress through the air.

Groundspeed—is the rate of the airplane’s in-flight progress over the ground.

Example 5.3

A jet airliner, flying due east at 500 mph in still air, encounters a 70-mph
tailwind blowing in the direction 60° north of east. The airplane holds its compass head-
ing due east but, because of the wind, acquires a new ground speed and direction. What
are they?

130) u+v

L o I
500 u
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Solution  If u = the velocity of the airplane alone and v = the velocity of the tailwind,
then |u| = 500 and |v| = 70 (Figure 12.17). The velocity of the airplane with respect to
the ground is given by the magnitude and direction of the resultant vector u + v. If we let
the positive x-axis represent east and the positive y-axis represent north, then the compo-
nent forms of u and v are

u = (500, 0) and v = (70 cos 60°, 70 sin 60°) = (35, 35 \,.»'5) ;

Therefore,

u + v = (535,35\/3) = 535i + 35\/3j

lu + v| = V5352 + (35V3)? ~ 5384

and

0 = tan™ 3;;53 ~ 6.5°.
The new ground speed of the airplane is about 538.4 mph, and its new direction is about
6.5° north of east. o

Example 5.4

A 75 N weight is suspended by two wires as shown in figure above. Find the forces F; and F; acting in both

wires.
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Solution

The force vectors F| and F> have magnitudes | F;|and| F2| and components that
are measured in Newtons. The resultant force is the sum F; + F» and must be equal in

magnitude and acting in the opposite (or upward) direction to the weight vector w

F) = (—|Fy|cos 55° |F,|sin55°) and F, = (|F;|cos40° |F;|sin40°).
Since Fy + Fy = (0, 75), the resultant vector leads to the system of equations
—|Fy|cos 55° + | F;|cos 40° = 0
| Fy|sin 55° + | F;|sin40° = 75.

Solving for |F3| in the first equation and substituting the result into the second equation,
we get

|Fy|cos 55° e |Fifoosss®
|2l ==z~ and  [Fisin55° + — —rc—sin40° = 75.
It follows that

IFil = 535 + cos 55°tand0® ~ > -67N,

and

IFs| = 75 cos 55°
' sin 55° cos 40° + cos 55° sin 40°
_... A5¢enS5Y . ..
 sin(55° + 40°) 118N,

The force vectors are then F; = (—33.08, 47.24) and F, = (33.08, 27.76).

R
K
|
I

0
b

F= F|+ F3 = <0.75)

/

w= (0, -75)
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Exercises
1) A boat leaves port on a heading of 40° with the automatic pilot set for 12 knots. On this
particular day, there is a 6-knot current with a heading of 75°.
a. Sketch and label vectors to represent the intended path of the boat, the current and the
resultant path of the boat with the effects of the current.
b. Calculate the speed and heading at which the boat will actually travel due to the effects
of the current.
2) Aplane leaves the airport on a heading 45° traveling a 400 mph. The wind is blowing at a heading
of 135° at a speed of 40 mph. What is the actual velocity of the plane?
3) Consider a 100-N weight suspended by two wires as shown in the accompanying figure. Find the

magnitudes and components of the force vectors F1 and F2.

N30 45"y

F, -

100

5.2.2 DOT PRODUCT (WORK DONE)

After investigating the dot product, we apply it to finding the projection of one vector onto another (as

displayed in Figure 5.2) and to finding the work done by a constant force acting through a displacement.
The scalar quantity we seek is the length |F| cos 8 where 6 is the angle between the two vectors F and D.

Then

scalar component of F

in the direction of D )(length of D)

Work = (

= (|F| cos@)| D]
= F-D.
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?

i
[
I D
|
[
[
1

Figure 5.2: The work done by a constant force F during a displacement D is | F| cos 0,
which is the dot product F.D.

DEFINITION _~ The work done by a constant force F acting through a displace-
ment D = PQ is

W=F-D.

Forces Perpendicular to the Motion Do No Work

When an object is displaced horizontally on a flat table, the normal force n and the gravitational force Fg do

no work since cos 6 =90° =0

Example 5.5
If |[F| =40 N (newtons), D= |D| =3 m, and 6 = 60¢, the work done by Fin acting from P to Q is

Work = F-D Definition
= |F||D| cos @
= (40)(3) cos 60° Given values
= (120)(1/2) = 60 7J (joules).
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Exercises

How much work does it take to slide a crate 20 m along a loading dock by pulling on it with a 200 N force
at an angle of 30° from the horizontal?
A 30 kg box is placed 10 m up a ramp that is inclined at 23° to the horizontal. Calculate the work done by

the force of gravity as the box slides down to the bottom of the ramp.

5.2.3 TORQUE (CROSS PRODUCT)

When we turn a bolt by applying a force F to a wrench (Figure 5.3), we produce a torque that
causes the bolt to rotate.

The torque vector points in the direction of the axis of the bolt according to the right-hand rule
(so the rotation is counter clockwise when viewed from the tip of the vector).

The magnitude of the torque depends on how far out on the wrench the force is applied and on
how much of the force is perpendicular to the wrench at the point of application.

The number we use to measure the torque’s magnitude is the product of the length of the lever

arm r and the scalar component of F perpendicular tor.

Magnitude of torque vector = |r||F|sinf,or |r X F|

If we let n be a unit vector along the axis of the bolt in the direction of the torque, then a
complete description of the torque vector is

Torque vector = (|r||F|sinf)n, or rxXF
Torque %

Component of F
perpendicular to r.
Its length is |F| sin 6.

Fig 5.3: The torque vector describes the tendency of the force F to drive the bolt forward.
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Example 5.6

Find the magnitude of the torque generated by force F at the pivot point P in Figure 5.4 is

3 ft bar

201b
magnitude
force

Figure 5.4: Torque exerted by F at P

|PO X F| = |PQ||F| sin70°
= (3)(20)(0.94)
~ 56.4 ft-1b.

The magnitude of the torque exerted by F at P is about 56.4 ft-Ib. The bar rotates
counterclockwise around P.

5.2.4 TRIPLE SCALAR OR BOX PRODUCT

The product is called the triple scalar product of u, v, and w (in that order). As you can see from the
formula
[(uxv) -w|=|uxv||w||cos8]
the absolute value of this product is the volume of the parallelepiped (parallelogram-sided box) determined
by u, v, and w (Figure 5.5). The number |(u x v)| is the area of the base parallelogram. The number
|[w||cos@|is the parallelepiped’s height. Because of this geometry, (u x v) - wis also called the box product

of u,v, and w.
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uxy

Area of base
———  =luxy

Volume = area of base - height
= |u X v| |w] |cos 6|
=|uxv)-w

Figure 5.5: The number |(u x v) - w| = is the volume of a parallelepiped.

By treating the planes of v and w and of w and u as the base planes of the paral-
lelepiped determined by u, v, and w, we see that

(uXv)w=(vXw-u=(wXu) v
Since the dot product is commutative, we also have
(uXv)w=u-(v X w).

The triple scalar product can be evaluated as a determinant:

. Uy U3, Uy uz|, uy U
(u X v) w= ko | s kK|-w
Va V3 Vi W3 Vi WM
U U3 U, Uy U [15)
— M’l — M"Z ”p3
Vo V3 Vi V3 Vi Va

Uy uz us

W) Wh Wi
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Example 5.7

Find the volume of the box (parallelepiped) determined by u = i + 2j — k,
v = —2i + 3k,andw = 7j — 4k.

Solution  Using the rule for calculating determinants, we find

1 22 =]
(uXv)yw=1[-2 0 3| = —23.
0 F =4

The volume is |(u X v)+-w| = 23 units cubed.

Exercises

Find the volume of the parallelepiped (box) determined by u, v, and w.

u v w
1) 2j 2k
2) i—j+k 2i+j— 2k —-i+2j—Kk
3) 2i + 2i—j+k i+ 2k
5.2.5 INTERPRETATION OF THE DIRECTIONAL DERIVATIVES & GRADIENT
¥4
Surface S:

If(.l'o + suy, Yo + su,) — flxg. o)

Z=ﬂLer
\
D

}v

(xg + suyp.yg + sup)
Po(XO, _Vo) u= u|i + 112j

Figure 5.6: Interpretation of Directional Derivatives.

From the Figure 5.6, the slope of curve C at Po is (Duf)e, in which it generalizes two partial derivatives. We

can now ask for the rate of change of fin any direction u, not just the directionsiand j.
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For a physical interpretation of the directional derivative, suppose that T = f (x, y) is the temperature at each
point (x, y) over a region in the plane. Then f (x,, ¥o) is the temperature at the point P, (Xo, Vo) and (Duf)e, is

the instantaneous rate of change of the temperature at Po stepping off in the direction u.

Properties of the Directional Derivative D, f = Vf-u = |Vf|cos#

1. The function f increases most rapidly when cosf = | or when = Oand u
is the direction of V. That is, at each point P in its domain, f increases most
rapidly in the direction of the gradient vector Vf at P. The derivative in this
direction is

Duf = |Vf|cos (0) = [Vf].

2. Similarly, f decreases most rapidly in the direction of —Vf. The derivative in
this direction is Dyf = |Vf|cos (m) = —|Vf].

. Any direction u orthogonal to a gradient V/ # 0 is a direction of zero change
in f because @ then equals 7/2 and

Duf = |Vf|cos(m/2) = |Vf]-0 = 0.

‘o

Example 5.8

(a) Find the derivative of f(x,y,z) = x* — xp? — z at Py(1, 1, 0) in the direction of
v =2i — 3j + 6k

(b) In what directions does f change most rapidly at Py, and what are the rates of change
in these directions?

66



Solution

(a) The direction of v is obtained by dividing v by its length:

[vl= V(2 + (=3P + (6 = V49 =7

The partial derivatives of f at Py are
=062 =)n =2 f=-0nn=-2  f:=-1lag=-L
The gradient of f at Py is

Vil =2i - 2j — k

The derivative of f at Py in the direction of v is therefore

) . 25 Fos 6
(Duf)i10 = Va0 u = (2i — 2j — k)- (‘7" -1+ '7")

(b) The function increases most rapidly in the direction of Vf = 2i — 2j — k and de-
creases most rapidly in the direction of — V. The rates of change in the directions are,

respectively,
IV/l= V2P + (-2 + (-1 =V9=3 and —|Vf|=-3.
Example 5.9

Suppose that the temperature T at each point (x, y, z) in a region of space
is given by

T=100 — x2 — y2 — 2%,

and that F(x, y, z) is defined to be the gradient of T. Find the vector field F.

Solution  The gradient field F is the field F = VI = —2xi — 2yj — 2zk. At each point
in space, the vector field F gives the direction for which the increase in temperature is
greatest.
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Exercises

Find the directions in which the functions increase and decrease most rapidly at P,. Then find the
derivatives of the functions in these directions.

(a) flx,y,z)=Inxy +In yz +Inxz, P,(1,1,1)

(b) glx,y,z)=xev+ 2% Po(1,In2,1/2)

(C) f(x' Y, Z) = (x/y) —Yyz P0(4J1' 1)

5.2.6 GRADIENTS, TANGENTS AND NORMAL TO LEVEL CURVES

The streams flow perpendicular to the contours. The streams are following paths of steepest descent so the
waters reach the ocean as quickly as possible. Therefore, the fastest instantaneous rate of change in a
stream’s elevation above sea level has a particular direction. In this section, you will see why this direction,

called the “downhill” direction, is perpendicular to the contours.

Figure 5.7: Contours of the hill
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Based on above contours:

At every point (xg, ¥y) in the domain of a differentiable function f(x, y), the gra-
dient of f is normal to the level curve through (xg, yo) (Figure).

The level curve f(x, y) = f(xg. yp)

) (xgs ¥o)

) ¥ it o)

Figure 5.8: The gradient of a differentiable function of two variables at a point is always normal to the
function’s level curve through that point.

Where it shows our observation that streams flow perpendicular to the contours in topographical maps (see
Figure 5.7). Since the downflowing stream will reach its destination in the fastest way, it must flow in the

direction of the negative gradient vectors from Property 2 for the directional derivative.

Now let us restrict our attention to the curves that pass through P, (Figure Below). All the velocity vectors

at P, are orthogonal to Vf at P, so the curves’ tangent lines all lie in the plane through P, normal to Vf. At

every point along the curve, Vfis orthogonal to the curve’s velocity vector.

w _f(x,y,2)=c

Figure Above: The gradient Vf is orthogonal to the velocity vector of every smooth curve in the surface

through P,. The velocity vectors at P, therefore lie in a common plane, which we call the tangent plane at P,.
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We now define this plane.

to V'f l Py-

The normal line of the surface at Pj is the line through Py parallel to Vf|p,.

DEFINITIONS The tangent plane at the point Po(xo, Vo, zo) on the level sur-
face f(x, y,z) = c of a differentiable function f is the plane through P, normal

The tangent plane and normal line have the following equations:

Tangent Plane to f(x, y. z) = ¢ at Py(xg, Vo, Z0)
S (Po)(x — x0) + f,(Po)(y — yo) + fAPo)(z — 2z0) = 0
Normal Line to f(x, y, 2) = ¢ at Po(xo, yo. Zo)

x=x0 + f(Po)t, y =y + f,(Po)t, z = zg + fAPo)t

(2)

(3)

Example 5.10

Find an equation for the tangent to the ellipse at the point (=2, 1).

2
Xy ol
3 ) =2

Solution  The ellipse is a level curve of the function

2
flx,y) = xT +y2

The gradient of f at (=2, 1) is

Vil = (%l + 2)’])(_’“ ==y

The tangent is the line

-Dx+2)+@(py-1=0
x—2y=-4

VF(-2,1) =i + 2j x—2y=-4

2,1

2 1 0] 1 2 Jons

We can find the tangent
to the ellipse (x2/4) + y2 = 2 by treating
the ellipse as a level curve of the function
flx,y) = (x*/4) + y?




Example 5.11

Find the tangent plane and normal line of the surface
f(x, DA zZ) = .\’2 + _1’2 +z—-9=0 A circular paraboloid

at the point Py(1, 2, 4).

Solution  The surface is shown in Figure

The tangent plane is the plane through Py perpendicular to the gradient of f at Py.

The gradient is
Vilp, = (2xi + 2 + k)a24 = 2i + 4j + k.
The tangent plane is therefore the plane
2x—-1)+4(y-2)+(z—4) =0, o x+4+z=14.

The line normal to the surface at Py 1s

¥= 1+t y=2+4, =4 b s}

The surface
3 L
Py(1.2.4) //§+y+"9:0
ol 4, !
.

|
|
!

__— Normal line

\Tnngem plane

Exercises

Find equations for the

(a) Tangent plane and (b) normal line at the point P, on the given surface.
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5.2.7 APPLICATION OF DIVERGENCE AND CURL

Divergence at a given point measures the net flow out of a small box around the point, that is, it measures
what is produced (source) or consumed (sink) at a given point in space.

For example, it is used to describe the flow of gas within a domain space. A gas is compressible, unlike a liquid,
and the divergence of its velocity field measures to what extent it is expanding or compressing at each point.
Intuitively, if a gas is expanding at the point (x,, ¥,) the lines of flow would diverge there (hence the name)
and, since the gas would be flowing out of a small rectangle about (x,, V), the divergence of F at (x,, y,) would

be positive. If the gas were compressing instead of expanding, the divergence would be negative.
Source: div F (x5, y9) >0

A gas expanding
at the point (x;, ¥g).
A

N

- >
< >

7\

v

Sink: div F (xy, y5) <0

A gas compressing
at the point (xq, yg)-

S
AN

Figure 5.9: If a gas is expanding at a point the lines of flow have positive divergence; if the gas is
compressing, the divergence is negative. Otherwise, it will get zero.
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Example 5.12

Determine the divergence’s characteristic of the vector fields; F(x, y) = 3x%i - 6xyj

V. . F(E9) = d_ll+ é)z/~
5}

= Bz 3z? + %(_Gl‘y) =6z —6x=20.

A vector field with vanishing divergence is called a solenoidal
vector field.

*In fluid dynamics, when the velocity field of a flowing liquid always has divergence equal to zero, as in those
cases, the liquid is said to be incompressible.

If we think of the vector field as a velocity vector field of a fluid in a motion, the curl measures the rotation.
At a given point, the curl is a vector parallel to the axis of rotation of flow lines near the point, with direction

determined by the Right Hand Rule.

Example 5.13

Determine wherther the curl of each vector field at the origin is the zero vector or points in the certain
directions as i, tj , k.

direction of
1" rotation
-—’/

direction of
<« qurl

Based on the direction of the rotation and the Right Hand Rule,
the curl will point in the —Kk = (0,0, —1) direction.
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The vector field is clearly irrorational, thus the
curl is the zero vector: {(0,0,0).

Based on the direction of the rotation
and the Right Hand Rule, the curl
points in the direction of

+j =(0,1,0)

Example 5.14

The following vector fields represent the velocity of a gas flowing in the xy-plane. Find the divergence and
curl of each vector field and interpret its physical meaning. Figure displays the vector fields.

\
§\
=
7
e
Wk
N

-

(a) (b)
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"Y
A~ A
E == = S 4
: : = —> X > X
— - — - 4 \ / 4
(c) (d)
Figure 5.10: Velocity fields of a gas flowing in the plane
DIVERGENCE
Solution
. i i : . . :
(a) divF = 5;7(“) + (.:7(0}’) = 2¢: If ¢ > 0, the gas is undergoing uniform expan-
sion; if ¢ << 0, it is undergoing uniform compression.
d'F—-(l—z—i'—O' o : :
(b) divF = r.’x( cy) ay (cx) = 0: The gas is neither expanding nor compressing.
. ) . . . .
(c) divF = (:—x (¥) = 0: The gas is neither expanding nor compressing.
2xy 2xy
= - = 0: i
) @R @y e

O 1 o o X
(d) divF = o (xz 4 yz) + ay (xz + y2
the divergence is zero at all points in the domain of the velocity field.
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CURL

Solution
(a) Uniform expansion: (curl F)-k = %(cy) = % (cx) = 0. The gas is not circulating

at very small scales.
o

(b) Rotation: (curl F)-k = E(C)c) — r,;—;)(—cy) = 2c. The constant circulation density
indicates rotation at every point. If ¢ > 0, the rotation is counterclockwise; if ¢ < 0,

the rotation is clockwise.

(¢) Shear: (curl F)-k = —-(,:—;)- () = —1.The circulation density is constant and negative,

so a paddle wheel floating in water undergoing such a shearing flow spins clockwise.
The rate of rotation is the same at each point. The average effect of the fluid flow is to
push fluid clockwise around each of the small circles shown in Figure 16.31.

(d) Whirlpool:

" & ; —y y? — x2 y2 = x?
(curlF)-k=(—<—>—(—(—)— = 0.

The circulation density is 0 at every point away from the origin (where the vector field
is undefined and the whirlpool effect is taking place), and the gas is not circulating at
any point for which the vector field is defined.
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