MATRIX ALGEBRA FOR NON-HOMOGENEOUS LINEAR
ALGEBRAIC SYSTEM

WEEK 6: MATRIX ALGEBRA FOR NON-HOMOGENEOUS LINEAR ALGEBRAIC SYSTEM

6.1 INTRODUCTION

A matrix is an array of mn elements (where m and n are integers) arranged in m rows and n columns.
The difference between matrix and column/ row vector is shown in Table 6.1.

Table 6.1 Matrix, column vector and row vector.

Matrix Column vector Row vector
(i.e. matrix with one (i.e. matrix with one row)

column)

a1 Q12 A3 0 Qqp (011\

Az1 Az dzz = Ozp C21

A=|az; az; dazz - dazy C=<C3 R={r1 T2 T3 = Tin}
An1 Am2 Am3  ° Amn Cm1
Size(A) =mxXxn Size(C) =mx1 Size(R)=1xn

where a,,,, is the element of the matrix at m™ row and n*" column. If m = n, it is known as square
matrix. Non-square matrix has m # n.

The common notation of matrix and vector is shown in Table 6.2:

Table 6.2 Common notation of matrix and vector.

Matrix Vector

upper-case non-italic bold letter (e.g. A = [; ﬂ) upper-case italic bold letter (e.g. A = {;})

symbol in box bracket (e.g. [A] = [; ﬂ) symbol in curly bracket (e.g. {4} = {é})




Table 6.3 Type of matrices.

Zero/ Null Matrix Symmetric Matrix Diagonal Matrix
0 0 O 5 1 2 5 0 0
0 0 O 1 3 7 0 3 0
0 0 O 2 7 8 0 0 8
where a;; = a;; e All elements off the main

diagonal are equal to 0.

Identity/ Unit Matrix Upper Triangular matrix Lower Triangular matrix
1 0 0 2 =5 6 2 0 0
[010] [038} [9 3o]
0 0 1 0 0 1 20 -3 1

e Diagonal matrix  with | e All the elements below | ¢ All the elements above

element=1 main diagonal =0 main diagonal =

Banded Matrix Tridiagonal Matrix Anti-Symmetric / Skew-

Symmetric Matrix
a1 a; a3 0 0 1 3 0 0
Az1 Az Q3 dzq O 5 2 9 0 5 1 -2
az; a3z Q33 Q34 0zs 0 6 5 1 [—1 -3 7]
0 ay ay3 a4 Qs 0 0 -3 -9 2 =7 8
l 0 0 as3 asy a55J
e Banded matrix that has | where a;; = —a;;
e All elements = 0, except for bandwidth of 3.

a band centered on the
main diagonal

The basic operations of matrices such as trace, transpose, equality, addition/subtraction, scalar
multiplication, transpose, multiplication, determinants, cofactor, adjoint, and inverse are provided in
Table 6.4.

Table 6.4 Basic Operations of Matrices

Basic Matrix Algebra | Example

Trace 4 13 3
F -2 19 1
3 2 0

Trace (F) =Summation of diagonal element= 4+19+0=23

Fauallty [42 19] B = [2 19]C [2 13 2] A=B;A#C




Addition/Subtraction _ _ 8 26
p=A+B=[", 3
_A_pr_1[0 O
s=a-n=[} |
Scalar Multiplication _[16 52
2D [—8 76
Transpose, [¢]7 4 13 2 . 4 =2
C=1_, 19 1]; c"=113 19
2 1
Matrix 3 1 5 91 22 29
Multiplication 8 6 [> ] =|s2 8s
0 4] —— 28 8
~————_(Size 2x2) -
(Size 3x2) (Size 3x2)
Note: AB #+# BA 5 9 3.1
ote: * [ 8 6| = error
7 2 S . . .
— 0 4 (because non—equal interior dimensions)
(Size 2x2)

| —
(Size 3x2)

Determinant, |e| _[4 13]. _|4 13|_ (- —
A [_2 1o) i 1Al |_2 15| = 4(19) = (=2)(13) = 102
DR R RS
Note: [o] is F=|-2 19 1|;G=
determinant not 3 2 0 3 2 .00
o i 0 2 1 0
absolute in this case.
4 13 3
19 1 -2 1 -2 19
IF|=|-2 19 1=4|2 O|—13|3 0|+3|3 2|=—152
3 2 0
Note: It is inefficient
to calculate 4 13 33
-2 19 1 1
determinant 1G] = 3 2 0 0
manually for 4x4 0 2 10
matrix and above. 19 1 1 2 1 1 2 19 1 —2 19 1
=412 0 0/—13|3 0 O[+3(3 2 0/-3|3 2 o0
2 10 0 1 0 0 2 0 0o 2 1
=4(2) —13(3) + 3(6) — 3(—55) = 152
Cofactor & Adjoint 4 131, _[ 19] —|—2|]_ 19 2
A—[_2 19 ; cofactor(A)= ~113] 14 |~ 213 4]

Note: adjoint =
cofactor”

19 2T=[129 —i3]

adjoint(A)=(cofactor(A))T = [_13 4




Note: It is inefficient 19 1| _| | 19|
to calculate cofactor 4 13 3 13 3 4 3 34 13
& adjoint manually F=[—2 19 1];cofactor(F): | 3 0 —| | =
for 4x4 matrix and 3 2 0 13 3 | 3| | 4 13
above. 19 1 19
-2 3 —61 —44-
6 -9 31 |; adjoint(F) = —9 —10
—44 —-10 102 —61 31 102
4 13 3 3]
-2 19 1 1]
C=13 2 o of
0 2 1 0
119 1 1 -2 1 1 |-2 19 1 -2 19 1
2 00 —|3 0o [3 2 o -{3 2 o0
2 10 o 10 lo 2 o0 0 2 1
13 3 3 |4 3 3 4 13 3 4 13 3
—[2 0ol 300 -3 2 0 3 2 0
cofactor(G)= ;3 3t " % % 4 5 e a fistyy|m
19 11 —-|-2 11| |-2 19 1| —|-2 19 1
2 10 o 10 lo 2 o0 0 2 1
13 3 3| |4 3 3 4 13 3| |4 13 3
—l19 1 1] [-2 11 -2 19 1| [-2 19 1
2 00 I3 00 3 2 o I3 2 oll
(2 -3 6 55 2 -6 44 0
-6 9 -18 -13| _, . -3 9 10 o
cofactor(@ =144 10 —20 gz [PHIMUD =] 15 30 152
0 0 152 -152 55 —13 —82 —152
Inverse, [¢]~1 _[4 131 p-1_ __1q19 -13
A_[—Z 19]’A adjomt(A) 102[ ]
4 13 3 1 -2 6 —44
F=|-2 19 1f; F1= llad]omt(F)—m 3 -9 -10
3 2 0 —61 31 102
4 13 3 3 2 —6 44 0
-2 19 1 1| .,_1 11-3 9 10 0
G=l3 2 o of¥ TigWon@=155¢ _1g8 —20 152
0 2 1 0 55 —-13 —-82 —-152

Augmentation

0.1x1 + 7x2 - 0.3X3 = _193

3x; — 0.1x, — 0.2x3 = 7.85
0.3x; —0.2x, +10x; = 71.4
(i)  Conventional Matrix form
0.1 7 —0.31(*1 —-19.3
[ 3 —-01 —0.2] {xz} ={ 7.85 }
03 —02 10 1\x3 71.4
(i)  Augmented Matrix form
0.1 7 —-0.3 1 —19.3
[ 3 -01 -02i 785 ]
03 -0.2 10 :171.4




6.2 Solving Non-Homogeneous System of Linear Equations

Multicomponent systems result in n set(s) of mathematical equations that must be solved
simultaneously. It can be represented by the following matrix format: [A][{X} = {B}. If {B} # {0}, itis
known as non-homogeneous system of linear equations. In this study, several methods used to solve
the unknown {X} by using the [4] & non-zero {B} will be discussed next.

Linear Algebraic Equations Coefficient Matrix, [A] Unknown, {X} Non-zero {B}
4x1 + 13x2 = 8
_2x1 + 19x2 = 2
_ 4 13 X1 8
n'—2 where 2 sets of eqns. are _y 19] {xz} {2}
given to solve x; & Xx,
respectively.
O.le + Z.SXZ - 9X3 = -6
—4.5x; +3.5x, —2x3 =5
—8x1 — 9xp + 22x3 = 2 05 25 -9 X1 -6
_ — x
n.=3 where 3 sets of eqns. are [ —485 ig 222] {xz} { g }
given to solve x; , x, and
X3 respectively.

Forn < 3, methods frequently used to solve the non-homogeneous system of linear equations are
given below:

(i) Matrix Inversion (Moderate efficiency for n = 3 & high efficiency forn = 2)
(ii) Graphical method (Less efficiency but useful for visualizing & enhancing intuition)
(iii) Cramer’s rule (High efficiency for n < 3 - Main Focus)

(iv) Method of elimination (Less efficiency)

However, method (i)- (iv) are less efficiency for n > 3, thus more advanced methods are introduced:

(a) Gaussian Elimination (Naive vs Partial Pivoting) --- Main Focus
(b) LU Decomposition --- Out of scope

(c) Thomas algorithm --- Out of scope

(d) Gauss Seidel Method --- Out of scope

6.2.1 Matrix Inversion Approach

[Al{X} = {B}
If [A] is a square and non-singular matrix, [A][A]~1 = [A]71[A] = [I]

{x} =[AI""{B}

A= [_42 ig]‘ AT = Ladjoint(A) = o [129 _i L= [129 _i ] {g} = {12246//110022}



6.2.2 Graphical Method

Rearrange the equations into linear plot format and then plot it.

Original linear equations

a11X1 + a12%; = by

az1X1 + Az2Xx; = by

3x1 + 2x2 =18
—x1+2x, = 2

Linear plot format
X, =mxy+c¢
where m = slope ; ¢ = intercept

a b
Xy = — (ﬁ) x1 + (—1
aiz aiz

1
a b
— (ﬁ) X, + (_2
az2 azz2

X2

)
)

Q)=+ ()
~5)x+ ()

Using graphical method, the solution that satisfies both equations is the intersection point.

Solution: x; = 4;x, = 3

1
1
1
1
1
1
1
1
4

For singular system, the slopes of the equations are equal (or zero determinant), and it leads to

X

(a) No solution case when there is no interception between the lines or
(b) Infinite solutions case when there are infinite interception points between the lines.

(a) No solution case

(b) Infinite solutions case

Diff of slope=

1
Diff of slope= ’_ 2
-1

X =+ G) x; + (1)
X, =+ (%)xl + (1)




For ill-conditioned system (also known as ill-posed system), the slopes of the equations are almost
equal (or close-to-zero determinant), and it leads to

(c) Many solutions case and it is sensitive to round-off error.

(c) Many solutions case

Xy =+ (?) x; + (1.1)

0

Diff of slope,| > =—0.46 — (—0.5) = 0.04 = 0
1

6.2.3 Cramer’s Rule

a1 Q12 A13] (%1 by
Az1 Ay Ap3|{X2t =1b,
a3y 4zz Qazz]iX3 b,

a1 by ags

azr by aps
az; bz asz

|A] '

a1 a2 by
az1 Az by

dz; dz; bz
|A]

Xy = X3 =

For example,
03 052 117(* —0.01
0.5 1 1.9|3X2¢; =13 0.67
0.1 03 0513 —0.44

03 —-0.01 1
0.5 0.67 19

0.3 0.52 -0.01
05 1 0.67

—-0.01 052 1
0.67 1 19

X = —8.§L4 Ogés 10.5 _ 149, x,= 0(.)13 —00!.5424 ({.5 _ 295,  xy= 0.33 0(.)352 —01.44 _ 198
05 1 19 05 1 19 05 1 19
01 03 05 01 03 05 01 03 05

Limitation: Impractical for eqns (n > 3).



6.2.4 Method of Elimination (Or Substitution Method)

03 052 1](* —0.01
05 1 1.9] {xz} = { 0.67 }

0.1 03 0.51x3 —0.44
* Step1l:xq; = inx, & x5 terms for 1* eqn
e Step 2: Substitute x; = -+ to 2" & 3" eqgns.
Obtain x, = -+-in x5 term
* Step 3: Substitute x, = --- to 3 eqn.

Obtain x5 solution

*  Step 4: Back Substitute to obtain x; & x, solutions

Limitation: Extremely tedious to solve manually. However, the elimination approach can be extended
and made more systematically to improve the efficiency such as Gauss Elimination method.

6.2.5 Naive Gauss Elimination

It is an extension of the method of elimination which has a systematic scheme with forward
elimination & back substitution procedure.

Forward elimination #1

a1 Az 43| (X1 by i1 Q12 Q137 (X b,
[a21 az; azs‘{x2}=[b2} Forward elimination #1 [0 az; aég“h}: b,

A 1A
azy Qazz azzflx3 bs 0 az; azzlixs b3

R1is the pivot equation, where a,4 is the pivot element to turn a5, & a3, into 0

R2'=R2-R1xf,; where factor, f,; = % ; Forexample, ayy = ay; —ay1f21 =0
11

R3'=R3-R1xf;; where factor, f3; = ? ; Forexample, aj; = as; — aq1f31 =0
11

Forward elimination #2

a1 A1z Q137 (Xq by Q11 Q12 Q137 (X4 by
1A 1A ! 1A
0 a3 axs|{x:;=1{b; Forward ehmination #2 | 0 azz  az3|{x2} ={ b

! ! n
0 aj ajs3llxs b4 0 0 azlixs by

R2 is the pivot equation, where a}, is the pivot element to turn a5, to be 0

4

a
R3"=R3"-R2'xf3;  where factor, f3, = —=* ; For example, az, = az; — az,f32 = 0
22

Note: o' and "’ indicate change of value after first and second elimination procedures, respectively.



Back Substitution

(11 Q12  A137 X1 bl "
0 apyp axp|{xt= b, Back substitution #1 Solution, x; = 2%
[ 0 0 af3llxs by 33
aj; Q12 4137 X1 bl 1
0 ay axp|xt= b, Back substitution #2 Solution, xzzw
0 0 afsllxs by 2
ai1 Qg2 Q137 (X by
0 apyp ayl|lxt= b, Back substitution #3 Solution, x; = "
0 0 a%l3_ X3 bé/ 11
For example:
3 =01 -0.27(*1 7.85
0.1 7 —0.3[{X2; =31—19.3
03 —-0.2 10 1\x3 71.4
Forw,ard ellmlnatlotgﬁl 3 _01 _0.2 X 785
R2"=R2 — R1 X — 0 7.00333 —0.293333|{*2} =1{-19.5617
R3' = R3 — R1 x 033 0 —0.190000 10.0200 1\X3 70.6150
Forward elimination #2 3 —0.1 —0.2 X1 7.85
R3" = R3 — R’ x =012 0 7.00333 —0.293333[3X2¢ =4—19.5617
- 7.00333 0 0 10.0120 1\x3 70.0843
Back substitution #1  x5; = Zg'gf:z = 7.0000
Back substitution #2 x2=_19'5617_(;3'5;)::33)(7'0000) = —2.50000
Back substitution #3  x, =222-C0DE29)=C027) _ 3 40000

3

Limitation: Suffer the division by zero issue or the solution is sensitive to round-off error

For example,

0 2 31(*%1 8 Forwellrd ehmmat10n4#1
4 6 713X = _3 R2 =R2_R1X6 Error!

2 1 6l 5 R3' =R3—R1x2
0

bi—ay12X3—a13%3



- )

2 1000007 ¢*1) _ (100000 _
[0 _49999] {xz} = {—49998} Back substitution #1  x, =1
Back substitution #2  x; = w =0
Verification of solution:
LHS: RHS:
2 10000070y _ 100000 100000
[1 1 ]{1} N { 1 } { 2 }

100000—-100000
% erTOT'_bl} 100000 x100% { 0% }

% error_b,J =~ 150%

~ LHS + RHS as percentage of error, { o1

X
Thus, {xl} = {(1)} is a poor solution as it is different from the actual solution. The solution is sensitive

to the round-off error which leads to high error discrepancy.

6.2.5 Gauss Elimination with Partial Pivoting (GEwPP)

The limitation of Naive Gauss Elimination can be improved by using GEWPP that consists of scaling
analysis & pivoting strategy:

(a) Scaling analysis: Indicates the requirement of having pivoting to avoid divide by zero issue.
X
[2 100000] {x1} _ {100000} Scaling the coeffient matrix [0'0(;002 1]{ 1} = {1}

11 x2 2
1 1 X2 2 to have max value of 1 pivot element is smaller

Rule of thumbs: If the pivot element is smaller than other rows, then pivoting is needed.

(b) Pivoting strategy: Switch row/ column to avoid pivot element to be zero or close to zero

(i) Naive Gauss Elimination - Gaussian Elimination (GE) without pivoting strategy

[2 100000] {x1} _ {100000}

1 1 X)) 2

Note: Previously we remain the original formulation and get poor solution after solving it.

(ii) Gauss Elimination with Partial Pivoting (GEwPP) -Switch row so that largest element is the pivot
element (Main Focus).

= {;} Partial prvoting [0.001002 ﬂ {2} - {i}
pivot element is the largest

Seal [

10



Example of GEwPP

[2 100000] {2} _ {100000}

1 1 2
m 0'001002 ﬂ {2} = {%} Note: Scaling indicates partial pivoting is needed
Partial Pwoting [0.0(}002 1 {2} = {i} Note: Pivot element is the largest after PP.

[é 1 {2} = {i} Note: Round-off error happens when we use approximate value

Back substitution #1  x, =1

Back substitution #2  x; = 2—x, =1

Verification of solution:

LHS: RHS:
[i 1001000 G} _ {1002002} {1002000}

[100000—100002]
%error_bl} o000 ¥100% _{0.002%}

@xloo% 0%

~ LHS ~ RHS as percentage of error, {% error b
-~2

X
Thus, {x;} = ﬁ} is an accurate solution as it is close to the actual solution. The solution is less

sensitive to the round-off error by using the GEwPP, as compares to naive GE.

Determinant analysis can be done before GEwWPP to know if you have well-conditioned system or
singular system. Precaution: scaling is performed to standardize matrix before calculating determinant.

Well-conditioned system, Singular system, || =0
[e] #0
—1x; +1x, +2x3 = 2 —1x; +1x, + 2x3 =2 —1x; + 1x, +2x3 = 2
3x1_1x2+1X3:6 3x1—1x2+1X3=6 3x1—1x2+1X3=6
—1x1 + 3x2 + 4X3 =4 —le + Z.XZ + 4‘x3 =4 —le + 2x2 + 4x3 = 8
X1 11y
Unique solution for {X2 ; exists 2 2
X3 1 -2 3f=o0
3 3
1 1 2 2
-2 3 1 A
1 -1 H=o04=0 1
as 3 3| 7 We get no solution or infinite solutions for {X2 ¢, we can know
_1r 3 1 X3
L either it is no solution or infinite solutions by using GEwPP.

Rule of thumb: Assume that —0.1 < |¢| < 0.1 is considered as ill-conditioned system in this study.

11



Example: Solving a well-conditioned system using GEwPP

-1 1 21(*1 2
3 =1 1f4X2¢=146
-1 3 413 4

-1/2 1/2 1 1 1 -1/3 1/3: 2
Scalmg | 1 —-1/3 1/3} 2 Pwoting |-1/2 1/2 1 i1
-1/4 3/4 1 1 -1/4 3/4 1 1
Forward elimination #1
1
) (=) 1 -1/3 1/3 ;2
R2'=R2 —R1 X 1 0 1/3 7/652
_1) 0 2/3 13/12:15

R3' = R3 — R1 x 14

1 —1/3 1/3; 2
Scaling [0 2/7 1 512/7]

1 —-1/3 1/3; 2 ‘
0 8/13 1 :18/13

Pivoting [0 8/13 1 {18/13
0o 2/7 1 127

Forward elimination #2 1 -1/3 1/3 2
R3" — R3 — RY' ©) [0 8/13 1 518/13]
=R T RexXmr o o 15/28 15714
13
Back substitution @z%:
X1 1
x2=M=—1 ~ X2 =1{—1¢is an accurate solution
8/3 X3 5
X, = 2-(=1/3)x,=(1/3)x3 _ 1 as LHS=RHS (verification).

1

Example: Solving a singular system (infinite solutions case) using GEwPP

-1 1 21(*1 2
-2 2 413 4

-1/2 12 1 1
Scaling| 1 -1/3 1/3} 2
-2/4 2/4 1 1

1 -1/3 1/3: 2
Pivoting|-1/2 1/2 1 i1
-2/4 2/4 1 ‘1

12




Forward elimination #1

1
) (=) 1 -1/3 1/3:2
2 0 1/3 7/6 ' 2
, (-2
R3' = R3 —R1X 1

Forward elimination #2

(1) [1 -1/3 1/3:2
" o__ r_ ’ i 0 1/3 7/6 i 2]
R3" =R3'—R2' x 1 0 0 0 ‘o
3)
Back substitution  0x; = 0 _
’ 4 . 2-(-1/3)[ =75 -3 R
1
= —<t< 1
X3 =1t, where —o0 <t < ®© {xzi _ 276yt
_ 2-(7/6)%s & 1/3
Xy = EEV:EE t
Infinite solutions that can satisfy the
_ 2=(=1/3)x,-(1/3)x3

x, : \ eqns. /

Example: Solving a singular system (no solution case) using GEwPP

-1 1 21(* 2
-2 2 41\x3 8

-1/2 12 1 1
Scaling| 1 -1/3 1/3} 2
-2/4 2/4 1 2

1 -1/3 1/3: 2
Pivoting|-1/2 1/2 1 i1
-2/4 2/4 1 i2

Forward elimination #1

1
) (=) 1 -1/3 1/3:2
2 0 1/3 7/6 * 3

Forward elimination #2

1 [1 -1/3 1/3;2]

M _ pal _ poly 237 0 1/3 7/6i2
R3" =R3"—R2' % 1 0 0 0 i1
3)
Back substitution  Ox; = 1 ~ No solutions that satisfy the eqns.

13




6.3 Row Echelon Form, Reduced Row Echelon Form, Rank, & Linear Dependency

After the GEwPP, the coefficient matrix will be in the Row Echelon Form (REF). From the previous

example, we obtain:

Well-conditioned system, |e| # 0

Singular system, || = 0

—1x1 + 1x2 + Z.X'3 =2
3x1 - 1x2 + 1X3 =6
—1x1 + 3x2 + 4'X3 =4

_1x1 + 1x2 + 2x3 =2
3x1 - 1x2 + 1x3 =6
_le + sz + 4'X3 =4

_1X1 + 1.7C2 + ZX3 =2
3x1 - 1x2 + 1x3 =6
_le + 2x2 + 4x3 =8

Coefficient matrix,
Coefficient matrix,

-1 1 2
[Al=|3 -1 1] -1 1 2
1 3 4 [A1=[3 -1 1

-2 2 4

Coefficient matrix after GEwPP is
Coefficient matrix after GEwPP is in REF,

in REF,
1 -1/3 1/3
1 -1/3 1/3
[Algewpp = [0 8/{3 { ] [Alcewpp = [0 1/3 7/6]
0 0 15/28 0 0 0

REF has the following characteristics:

e Zero row(s) are always below non-zero rows if there is any.

e Pivot element of the non-zero rows at the bottom must be at the right of the pivot element
above it.

e Non-unique; can be in different scale

REF can be further reduced to Reduced Row Echelon Form (RREF) by using Gauss-Jordan Elimination
with Partial Pivoting (GJEwPP) as shown in the example below:

1 -1/3 1/3 1 -1/3 1/3
[Algewpp = [0 8/3 1 ] [A]gewpp = [0 1/3 7/6]
0 0 15/28 0 0 0
Scale the pivot elementto 1~ -4 ~1/3 1/3 Scale the pivotelementto1  [1 —1/3 1/3
3 R2 - R2 X3 0 1 3.5
R2 - R2 X = 0 1 3/8 Y
o R3 - R3 X — 0 0 0
R3 - R3 x = 0 0 1 :
Forward elimination 1 0 15
Forward elimination 10 11/24 =) 0 1 35
=) 0 1 3/8 R1—>R1—R2><T3 00 0
R1->R1—-R2x—2 0 0 1
1
Forward elimination
G 1 0 0
& 0 0 1
R2 > R2—-R3 X %

14



RREF has the following characteristics:

e Also a REF

e Unique; Scale the pivot element to 1

e Element above the pivot element is 0

Once RREF is obtained, rank of a matrix can be evaluated by counting the number of non-zero rows
of RREF. Note: Rank is the maximum number of linearly independent vector.

Well-conditioned system, |o| # 0

Singular system, || = 0

1 -1/3 1/3
REF= [0 8/3 1 ]
0 0 15/28
1 0 O
RREF=10 1 O
0 0 1
Rank=3

—1x1 + 1x2 + ZX3 = 2
3x1 — 1x, + 1x3 =6
—1x1 + 3%, +4x3 = 4

~ [A] = Full rank matrix

It means that all the 3 equations given are linear

independent, therefore finding 3 unknowns | linear independent, therefore finding 3
from 3 linear independent equations are | unknowns from 2 linear independent equations
possible. are difficult.

1 -1/3 1/3
REF= [0 1/3 7/6]
0 0 0
1 0 15
RREF=]|0 1 3.5
0 0 O
Rank=2

It means that only 2 out of 3 equations given are

—1x1 + 1x2 + ZX3 =2
3x1 - 1x2 + 1X3 =6
_le + 2x2 + 4'X3 =4

~ [A] = Rank — deficient matrix

As a rule of thumbs, n linearly independent equations are required to solve n unknowns. To solve 3
unknowns, if we have less than 3 linearly independent equations, i.e. more unknowns than knowns,

then we get the singular system issue.

6.4 Engineering Application of Non-Homogeneous System of Linear Equations

(a) Transform information into multiple linear algebraic equations to be solved simultaneously.

The amounts of metal, plastic, and
rubber needed for electrical
components types #1, #2, and #3 are

shown in the following Table.
Metal (g/ Plastic (g/  Rubber (g/
Component component) component) component)
1 15 0.25 1.0
2 17 0.33 1.2
3 19 0.42 1.6

Note: It is important for student to convert the
information into multiple linear algebraic
equations & matrix format.

If totals of 2120, 43.4 and 164 g of metal, plastic, and
rubber respectively are available each day. How many
components can be produced per day?

15Comp, + 17Comp, + 19Comp; = 2120
0.25Comp; + 0.33Comp, + 0.42Comp; = 43.4
1.0Comp, + 1.2Comp, + 1.6Comp; = 164

15 17 19 1(Comp, 2120
0.25 0.33 0.42|{Comp,; =143.4
1.0 1.2 1.61Comp, 164

Then, it can be solved by using the GEwPP, Cramer’s rule, etc.

15



(b) Electrical system

Ro R,+Ry; —Ry —R, Ly (+V,
V3 +E {‘7 = _RB RB + RC _RC 12 = —V2
K:,/ 1RA — / R_C___ —Ry —R¢ Ry + R+ Rpl 3 +V3

o L - vV Eg. If the resistance, R and voltage, V are given, estimate
Vi i 2 | the output currents, I of the 3 dof electrical circuit

\ Bz
( JRB j system.

1o\
\"-// -

[

442 -2 —4 (b (16
Source: —2 248 -8 |{Ly=]-40
uree: —4 -8 4+6+8ll; 0

https://www.youtube.com/watch?v=2naaCxfbq_M

Note: The derivation of the eqns involves theory of circuit, thus it is not
examined in this study.

(c) Mechanical vibration system

Assume f; = Fycoswt, f, = F,coswt, x; = X;coswt,

i x, = X,coswt, ¥, = —X,w?, ¥, = —X,w? o =10
[kl + kz - wzml _kZ Xl — Fl
—k ky + k3 — w?m,] (X> F,
Source: 2 27" 2
https://www.brown.edu/Departments/Engineering/Courses/ . . .
End/Notes)vibrations. mdofvibrations. mdof. htm Eg. If the stiffness, k, mass, m, force, F, and excitation

frequency, w are given, estimate the output response of
the 2 dof mass-spring vibration system.

400 — 102(40) —200 {Xl} _ {Fl}
—-200 400 — 102(40) | X2) ~ LF,

Note: The derivation of the eqns involves theory of vibration, thus it is
not examined in this study.

(d) Dynamic system

mq 1 0 a mg—cv

lmz -1 1 ]{T} = {ng—czv}
m; 0 —1]\R msg — C3V

Eg. If the mass, m, drag coeffient, ¢, and free fall velocity,

v are given, estimate the output tension & acceleration of
the 3 dof falling parachutists.

70 1 07a 70(9.81) — 10(5)
[60 -1 1 {T}: 60(9.81) — 14(5)
40 o -11R) (4009.81) -17(5)

Note: The derivation of the eqns involves theory of dynamic, thus it is
not examined in this study.

Advanced applications of matrix algebra including transformation matrix, image processing,
signal processing, finite element simulation, page rank algorithm, Hill Cipher encryption, etc.
Thus, mastering matrix algebra is important and it has huge impact.
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