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MATRIX ALGEBRA FOR NON-HOMOGENEOUS LINEAR 

ALGEBRAIC SYSTEM 

WEEK 6: MATRIX ALGEBRA FOR NON-HOMOGENEOUS LINEAR ALGEBRAIC SYSTEM 

6.1 INTRODUCTION 

A matrix is an array of mn elements (where m and n are integers) arranged in m rows and n columns. 

The difference between matrix and column/ row vector is shown in Table 6.1. 

 

Table 6.1 Matrix, column vector and row vector.  

Matrix 

 

Column vector 

(i.e. matrix with one 

column) 

Row vector 

(i.e. matrix with one row) 

𝐀 =

[
 
 
 
 
𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
𝑎21 𝑎22 𝑎23 ⋯ 𝑎2𝑛
𝑎31 𝑎32 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 ⋯ 𝑎𝑚𝑛]

 
 
 
 

 𝑪 =

{
 
 

 
 
𝑐11
𝑐21
𝑐31
⋮
𝑐𝑚1}

 
 

 
 

 𝑹 = {𝑟11 𝑟12 𝑟13 ⋯ 𝑟1𝑛} 

Size (𝑨) = 𝑚 × 𝑛 Size (𝑪) = 𝑚 × 1 Size (𝑹) = 1 × 𝑛 

where 𝑎𝑚𝑛 is the element of the matrix at 𝑚th row and 𝑛th column. If 𝑚 = 𝑛, it is known as square 

matrix. Non-square matrix has 𝑚 ≠ 𝑛.  

 

The common notation of matrix and vector is shown in Table 6.2: 

Table 6.2 Common notation of matrix and vector. 

Matrix Vector 

upper-case non-italic bold letter (e.g. 𝐀 = [
1 2
3 4

]) upper-case italic bold letter (e.g. 𝑨 = {
1
3
}) 

symbol in box bracket (e.g. [𝐴] = [
1 2
3 4

]) symbol in curly bracket (e.g. {𝐴} = {
1
3
}) 
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Table 6.3 Type of matrices. 

Zero/ Null Matrix 

[
0 0 0
0 0 0
0 0 0

] 

Symmetric Matrix 

[
5 1 2
1 3 7
2 7 8

] 

where 𝑎𝑖𝑗 = 𝑎𝑗𝑖  

Diagonal Matrix 

[
5 0 0
0 3 0
0 0 8

] 

• All elements off the main 

diagonal are equal to 0. 

Identity/ Unit Matrix 

[
1 0 0
0 1 0
0 0 1

] 

• Diagonal matrix with 

element = 1 

Upper Triangular matrix 

[
2 −5 6
0 3 8
0 0 1

] 

• All the elements below 

main diagonal = 0 

Lower Triangular matrix 

[
2 0 0
9 3 0
20 −3 1

] 

• All the elements above 

main diagonal = 0 

Banded Matrix 

[
 
 
 
 
𝑎11 𝑎12 𝑎13 0 0
𝑎21 𝑎22 𝑎23 𝑎24 0
𝑎31 𝑎32 𝑎33 𝑎34 𝑎35
0 𝑎42 𝑎43 𝑎44 𝑎45
0 0 𝑎53 𝑎54 𝑎55]

 
 
 
 

 

• All elements = 0, except for 

a band centered on the 

main diagonal 

Tridiagonal Matrix 

[

1 3 0 0
5 2 9 0
0 6 5 1
0 0 −3 −9

] 

• Banded matrix that has 

bandwidth of 3. 

 

Anti-Symmetric / Skew-

Symmetric Matrix 

[
5 1 −2
−1 −3 7
2 −7 8

] 

where 𝑎𝑖𝑗 = −𝑎𝑗𝑖 

 

The basic operations of matrices such as trace, transpose, equality, addition/subtraction, scalar 

multiplication, transpose, multiplication, determinants, cofactor, adjoint, and inverse are provided in 

Table 6.4.  

Table 6.4 Basic Operations of Matrices 

Basic Matrix Algebra Example 

Trace 
𝐅 = [

4 13 3
−2 19 1
3 2 0

] 

Trace (F) =Summation of diagonal element= 4+19+0=23 

Equality 𝐀 = [
4 13
−2 19

] ; 𝐁 = [
4 13
−2 19

]; 𝐂 = [
4 13 2
−2 19 1

]  ∴ 𝐀 = 𝐁 ; 𝐀 ≠ 𝐂 
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Addition/Subtraction 𝐃 = 𝐀 + 𝐁 = [
8 26
−4 38

] 

𝐄 = 𝐀 − 𝐁 = [
0 0
0 0

] 

Scalar Multiplication 2𝐃 = [
16 52
−8 76

] 

Transpose, [•]𝑇 
𝐂 = [

4 13 2
−2 19 1

] ;      𝐂𝑇 = [
4 −2
13 19
2 1

] 

Matrix 

Multiplication 

 

Note: 𝐀𝐁 ≠ 𝐁𝐀 

[
3 1
8 6
0 4

]
⏟    
(Size 3x2)

[
5 9
7 2

]
⏟  
(Size 2x2)

= [
22 29
82 84
28 8

]
⏟      
(Size 3x2)

 

[
5 9
7 2

]
⏟  
(Size 2x2)

[
3 1
8 6
0 4

]
⏟    
(Size 3x2)

= 𝑒𝑟𝑟𝑜𝑟⏟  
(because non−equal interior dimensions)

 

Determinant, |•| 

 

Note: |•|  is 

determinant, not 

absolute in this case. 

 

Note: It is inefficient 

to calculate 

determinant 

manually for 4x4 

matrix and above. 

𝐀 = [
4 13
−2 19

] ;  |𝐀| = |
4 13
−2 19

| = 4(19) − (−2)(13) = 102 

𝐅 = [
4 13 3
−2 19 1
3 2 0

] ;  𝐆 = [

4 13 3 3
−2 19 1 1
3 2 0 0
0 2 1 0

] 

|𝐅| = |
4 13 3
−2 19 1
3 2 0

| = 4 |
19 1
2 0

| − 13 |
−2 1
3 0

| + 3 |
−2 19
3 2

| = −152 

|𝐆| = |

4 13 3 3
−2 19 1 1
3 2 0 0
0 2 1 0

| 

= 4 |
19 1 1
2 0 0
2 1 0

| − 13 |
−2 1 1
3 0 0
0 1 0

| + 3 |
−2 19 1
3 2 0
0 2 0

| − 3 |
−2 19 1
3 2 0
0 2 1

| 

= 4(2) − 13(3) + 3(6) − 3(−55) = 152 

Cofactor & Adjoint 

Note: adjoint = 

𝐜𝐨𝐟𝐚𝐜𝐭𝐨𝐫𝑇 

 

 

𝐀 = [
4 13
−2 19

] ; cofactor(𝐀)= [
|19| −|−2|

−|13| |4|
] =  [

19 2
−13 4

] 

                              adjoint(𝐀)=(cofactor(𝐀))𝑇 = [
19 2
−13 4

]
𝑇

= [
19 −13
2 4

]  
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Note: It is inefficient 

to calculate cofactor 

& adjoint manually 

for 4x4 matrix and 

above. 

𝐅 = [
4 13 3
−2 19 1
3 2 0

] ; cofactor(𝐅)= 

[
 
 
 
 
 |
19 1
2 0

| − |
−2 1
3 0

| |
−2 19
3 2

|

− |
13 3
2 0

| |
4 3
3 0

| − |
4 13
3 2

|

|
13 3
19 1

| − |
4 3
−2 1

| |
4 13
−2 19

|]
 
 
 
 
 

=

[
−2 3 −61
6 −9 31
−44 −10 102

] ;     adjoint(𝐅) = [
−2 6 −44
3 −9 −10
−61 31 102

]  

𝐆 = [

4 13 3 3
−2 19 1 1
3 2 0 0
0 2 1 0

] ;  

cofactor(𝐆)=

[
 
 
 
 
 
 
 
 
 
 
 |
19 1 1
2 0 0
2 1 0

| − |
−2 1 1
3 0 0
0 1 0

| |
−2 19 1
3 2 0
0 2 0

| − |
−2 19 1
3 2 0
0 2 1

|

− |
13 3 3
2 0 0
2 1 0

| |
4 3 3
3 0 0
0 1 0

| − |
4 13 3
3 2 0
0 2 0

| |
4 13 3
3 2 0
0 2 1

|

|
13 3 3
19 1 1
2 1 0

| − |
4 3 3
−2 1 1
0 1 0

| |
4 13 3
−2 19 1
0 2 0

| − |
4 13 3
−2 19 1
0 2 1

|

− |
13 3 3
19 1 1
2 0 0

| |
4 3 3
−2 1 1
3 0 0

| − |
4 13 3
−2 19 1
3 2 0

| |
4 13 3
−2 19 1
3 2 0

|
]
 
 
 
 
 
 
 
 
 
 
 

= 

cofactor(𝐆) = [

2 −3 6 55
−6 9 −18 −13
44 10 −20 −82
0 0 152 −152

]; adjoint(𝐆) = [

2 −6 44 0
−3 9 10 0
6 −18 −20 152
55 −13 −82 −152

] 

Inverse, [•]−1 𝐀 = [
4 13
−2 19

]; 𝐀−1 =
1

|𝐀|
𝑎𝑑𝑗𝑜𝑖𝑛𝑡(𝐀) =

1

102
[
19 −13
2 4

]  

𝐅 = [
4 13 3
−2 19 1
3 2 0

] ; 𝐅−1 =
1

|𝐅|
𝑎𝑑𝑗𝑜𝑖𝑛𝑡(𝐅) =

1

−152
[
−2 6 −44
3 −9 −10
−61 31 102

] 

𝐆 = [

4 13 3 3
−2 19 1 1
3 2 0 0
0 2 1 0

] ; 𝐆−1 =
1

|𝐆|
𝑎𝑑𝑗𝑜𝑖𝑛𝑡(𝐆) =

1

152
[

2 −6 44 0
−3 9 10 0
6 −18 −20 152
55 −13 −82 −152

] 

Augmentation 
0.1𝑥1 + 7𝑥2 − 0.3𝑥3 = −19.3 

3𝑥1 − 0.1𝑥2 − 0.2𝑥3 = 7.85 

0.3𝑥1 − 0.2𝑥2 + 10𝑥3 = 71.4 

(i) Conventional Matrix form 

[
0.1 7 −0.3
3 −0.1 −0.2
0.3 −0.2 10

] {

𝑥1
𝑥2
𝑥3
} = {

−19.3
7.85
71.4

} 

 

(ii) Augmented Matrix form 

[
0.1 7 −0.3 −19.3
3 −0.1 −0.2 7.85
0.3 −0.2 10  71.4

] 
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6.2 Solving Non-Homogeneous System of Linear Equations  

Multicomponent systems result in n set(s) of mathematical equations that must be solved 

simultaneously. It can be represented by the following matrix format: [𝐴]{𝑋} = {𝐵}. If {𝐵} ≠ {0}, it is 

known as non-homogeneous system of linear equations. In this study, several methods used to solve 

the unknown {𝑋} by using the [𝐴] & non-zero {𝐵} will be discussed next. 

Linear Algebraic Equations Coefficient Matrix, [𝐴] Unknown, {𝑋} Non-zero {𝐵} 

4𝑥1 + 13𝑥2 = 8 

−2𝑥1 + 19𝑥2 = 2 

n=2 where 2 sets of eqns. are 

given to solve 𝑥1  & 𝑥2 

respectively. 

[
4
−2

13
19
] {

𝑥1
𝑥2
} {

8
2
} 

0.5𝑥1 + 2.5𝑥2 − 9𝑥3 = −6 

−4.5𝑥1 + 3.5𝑥2 − 2𝑥3 = 5 

−8𝑥1 − 9𝑥2 + 22𝑥3 = 2 

n=3 where 3 sets of eqns. are 

given to solve 𝑥1  , 𝑥2  and 

𝑥3 respectively.  

[
0.5 2.5 −9
−4.5 3.5 −2
−8 −9 22

] {

𝑥1
𝑥2
𝑥3
} {

−6
5
2
} 

 

For 𝑛 ≤ 3, methods frequently used to solve the non-homogeneous system of linear equations are 

given below: 

(i) Matrix Inversion         (Moderate efficiency for 𝑛 = 3 & high efficiency for 𝑛 = 2) 

(ii) Graphical method  (Less efficiency but useful for visualizing & enhancing intuition) 

(iii) Cramer’s rule          (High efficiency for 𝑛 ≤ 3 - Main Focus) 

(iv) Method of elimination  (Less efficiency) 

However, method (i)- (iv) are less efficiency for 𝑛 > 3, thus more advanced methods are introduced: 

(a) Gaussian Elimination (Naïve vs Partial Pivoting)  --- Main Focus 

(b) LU Decomposition --- Out of scope 

(c) Thomas algorithm --- Out of scope 

(d) Gauss Seidel Method --- Out of scope 

6.2.1 Matrix Inversion Approach 

[𝐴]{𝑋} = {𝐵} 

If [𝐴] is a square and non-singular matrix, [𝐴][𝐴]−1 = [𝐴]−1[𝐴] = [𝐼] 

{𝑋} = [𝐴]−1{𝐵} 

𝐀 = [
4 13
−2 19

]; 𝐀−1 =
1

|𝐀|
𝑎𝑑𝑗𝑜𝑖𝑛𝑡(𝐀) =

1

102
[
19 −13
2 4

] ; {𝑋} =
1

102
[
19 −13
2 4

] {
8
2
} = {

126/102
24/102

} 
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6.2.2 Graphical Method 

 

Rearrange the equations into linear plot format and then plot it. 

 

Original linear equations 𝑎11𝑥1 + 𝑎12𝑥2 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 = 𝑏2 

3𝑥1 + 2𝑥2 = 18 

−𝑥1 + 2𝑥2 = 2 

Linear plot format 

𝑥2 = 𝑚𝑥1 + 𝑐  

where 𝑚 = 𝑠𝑙𝑜𝑝𝑒 ; 𝑐 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

𝑥2 = −(
𝑎11

𝑎12
) 𝑥1 + (

𝑏1

𝑎12
)  

𝑥2 = −(
𝑎21

𝑎22
) 𝑥1 + (

𝑏2

𝑎22
)  

𝑥2 = −(
3

2
) 𝑥1 + (

18

2
)  

𝑥2 = −(
−1

2
) 𝑥1 + (

2

2
)  

Using graphical method, the solution that satisfies both equations is the intersection point. 

 

For singular system, the slopes of the equations are equal (or zero determinant), and it leads to  

(a) No solution case when there is no interception between the lines or 

(b) Infinite solutions case when there are infinite interception points between the lines. 

(a) No solution case (b) Infinite solutions case 

𝑥2 = +(
1

2
) 𝑥1 + (1)  

𝑥2 = +(
1

2
) 𝑥1 + (

1

2
)  

 

Diff of slope= |
−
1

2
1

−
1

2
1
| = −

1

2
− (−

1

2
) = 0 

𝑥2 = +(
1

2
) 𝑥1 + (1)  

𝑥2 = +(
1

2
) 𝑥1 + (1)  

 

Diff of slope= |
−
1

2
1

−1 2
| = −1− (−1) = 0 
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For ill-conditioned system (also known as ill-posed system), the slopes of the equations are almost 

equal (or close-to-zero determinant), and it leads to 

(c) Many solutions case and it is sensitive to round-off error.  

(c) Many solutions case 

𝑥2 = +(
2.3

5
)𝑥1 + (1.1)  

𝑥2 = +(
1

2
) 𝑥1 + (1)  

 

Diff of slope,|
−
2.3

5
1

−
1

2
1
| = −0.46 − (−0.5) = 0.04 ≈ 0  

 

6.2.3 Cramer ’s Rule 

[

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] {

𝑥1
𝑥2
𝑥3
} = {

𝑏1
𝑏2
𝑏3

} 

𝑥1 =

|

𝑏1 𝑎12 𝑎13
𝑏2 𝑎22 𝑎23
𝑏3 𝑎32 𝑎33

|

|𝐴|
, 𝑥2 =

|

𝑎11 𝑏1 𝑎13
𝑎21 𝑏2 𝑎23
𝑎31 𝑏3 𝑎33

|

|𝐴|
, 𝑥3 =

|

𝑎11 𝑎12 𝑏1
𝑎21 𝑎22 𝑏2
𝑎31 𝑎32 𝑏3

|

|𝐴|
 

For example,  

[
0.3 0.52 1
0.5 1 1.9
0.1 0.3 0.5

] {

𝑥1
𝑥2
𝑥3
} = {

−0.01
0.67
−0.44

} 

𝑥1 =

|
−0.01 0.52 1
0.67 1 1.9
−0.44 0.3 0.5

|

|
0.3 0.52 1
0.5 1 1.9
0.1 0.3 0.5

|

= −14.9, 𝑥2 =

|
0.3 −0.01 1
0.5 0.67 1.9
0.1 −0.44 0.5

|

|
0.3 0.52 1
0.5 1 1.9
0.1 0.3 0.5

|

= −29.5, 𝑥3 =

|
0.3 0.52 −0.01
0.5 1 0.67
0.1 0.3 −0.44

|

|
0.3 0.52 1
0.5 1 1.9
0.1 0.3 0.5

|

= 19.8 

Limitation: Impractical for eqns (𝑛 > 3). 
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6.2.4 Method of Elimination (Or Substitution Method)  

[
0.3 0.52 1
0.5 1 1.9
0.1 0.3 0.5

] {

𝑥1
𝑥2
𝑥3
} = {

−0.01
0.67
−0.44

} 

• Step 1: 𝑥1 = ⋯  in 𝑥2 & 𝑥3 terms for 1st eqn 

• Step 2: Substitute 𝑥1 = ⋯  to 2nd & 3rd eqns.  

                            Obtain 𝑥2 = ⋯ in 𝑥3 term 

• Step 3: Substitute 𝑥2 = ⋯  to 3rd eqn.  

                            Obtain 𝑥3 solution 

• Step 4: Back Substitute to obtain 𝑥1 & 𝑥2 solutions 

 

Limitation: Extremely tedious to solve manually. However, the elimination approach can be extended 

and made more systematically to improve the efficiency such as Gauss Elimination method.  

6.2.5 Naïve Gauss Elimination 

It is an extension of the method of elimination which has a systematic scheme with forward 

elimination & back substitution procedure. 

Forward elimination #1 

[

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] {

𝑥1
𝑥2
𝑥3
} = {

𝑏1
𝑏2
𝑏3

}        Forward elimination #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [

𝑎11 𝑎12 𝑎13
0 𝑎22

′ 𝑎23
′

0 𝑎32
′ 𝑎33

′
] {

𝑥1
𝑥2
𝑥3
} = {

𝑏1
𝑏2
′

𝑏3
′
}         

R1 is the pivot equation, where 𝑎11 is the pivot element to turn 𝑎21
′  & 𝑎31

′  into 0 

R2’=R2-R1x𝑓21     where factor, 𝑓21 =
𝑎21

𝑎11
         ; For example, 𝑎21

′ = 𝑎21 − 𝑎11𝑓21 = 0 

R3’=R3-R1x𝑓31     where factor, 𝑓31 =
𝑎31

𝑎11
         ; For example, 𝑎31

′ = 𝑎31 − 𝑎11𝑓31 = 0 

 

Forward elimination #2 

[

𝑎11 𝑎12 𝑎13
0 𝑎22

′ 𝑎23
′

0 𝑎32
′ 𝑎33

′
] {

𝑥1
𝑥2
𝑥3
} = {

𝑏1
𝑏2
′

𝑏3
′
}        Forward elimination #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [

𝑎11 𝑎12 𝑎13
0 𝑎22

′ 𝑎23
′

0 0 𝑎33
′′
] {

𝑥1
𝑥2
𝑥3
} = {

𝑏1
𝑏2
′

𝑏3
′′
}         

R2 is the pivot equation, where 𝑎22
′  is the pivot element to turn 𝑎32

′′   to be 0 

R3’’=R3’-R2’x𝑓32     where factor, 𝑓32 =
𝑎32
′

𝑎22
′    ; For example, 𝑎32

′′ = 𝑎32
′ − 𝑎22

′ 𝑓32 = 0 

Note: •′ and •′′ indicate change of value after first and second elimination procedures, respectively. 
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Back Substitution  

[

𝑎11 𝑎12 𝑎13
0 𝑎22

′ 𝑎23
′

0 0 𝑎33
′′
] {

𝑥1
𝑥2
𝑥3
} = {

𝑏1
𝑏2
′

𝑏3
′′
}        Back substitution #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗               𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,  𝑥3 =

𝑏3
′′

𝑎33
′′  

[

𝑎11 𝑎12 𝑎13
0 𝑎22

′ 𝑎23
′

0 0 𝑎33
′′
] {

𝑥1
𝑥2
𝑥3
} = {

𝑏1
𝑏2
′

𝑏3
′′
}        Back substitution #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗               𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,  𝑥2= 

𝑏2
′−𝑎23

′ 𝑥3

𝑎22
′  

[

𝑎11 𝑎12 𝑎13
0 𝑎22

′ 𝑎23
′

0 0 𝑎33
′′
] {

𝑥1
𝑥2
𝑥3
} = {

𝑏1
𝑏2
′

𝑏3
′′
}        Back substitution #3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗               𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑥1 =

𝑏1−𝑎12𝑥2−𝑎13𝑥3

𝑎11
  

 

For example: 

[
3 −0.1 −0.2
0.1 7 −0.3
0.3 −0.2 10

] {

𝑥1
𝑥2
𝑥3
} = {

7.85
−19.3
71.4

}     

Forward elimination #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅2′ = 𝑅2 − 𝑅1 ×
0.1

3

𝑅3′ = 𝑅3 − 𝑅1 ×
0.3

3

        [
3 −0.1 −0.2
0 7.00333 −0.293333
0 −0.190000 10.0200

] {

𝑥1
𝑥2
𝑥3
} = {

7.85
−19.5617
70.6150

}   

Forward elimination #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅3′′ = 𝑅3′ − 𝑅2′ ×
−0.19

7.00333

      [
3 −0.1 −0.2
0 7.00333 −0.293333
0 0 10.0120

] {

𝑥1
𝑥2
𝑥3
} = {

7.85
−19.5617
70.0843

}   

Back substitution #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗       𝑥3 =
70.0843

10.0120
= 7.0000 

Back substitution #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        𝑥2= 
−19.5617−(−0.293333)(7.0000)

7.00333
= −2.50000 

Back substitution #3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        𝑥1= 
7.85−(−0.1)(−2.5)−(−0.2)(7)

3
= 3.00000 

 

Limitation: Suffer the division by zero issue or the solution is sensitive to round-off error 

For example, 

[
0 2 3
4 6 7
2 1 6

] {

𝑥1
𝑥2
𝑥3
} = {

8
−3
5
}    

Forward elimination #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅2′ = 𝑅2 − 𝑅1 ×
4

0

𝑅3′ = 𝑅3 − 𝑅1 ×
2

0

      Error! 
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[
2 100000
1 1

] {
𝑥1
𝑥2
} = {

100000
2

} 
Forward elimination #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅2′ = 𝑅2 − 𝑅1 ×
1

2

 

[
2 100000
0 −49999

] {
𝑥1
𝑥2
} = {

100000
−49998

}Back substitution #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        𝑥2 = 1 

                                                            Back substitution #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        𝑥1 =
100000−100000𝑥2

2
= 0 

Verification of solution: 

LHS: RHS: 

[
2 100000
1 1

] {
0
1
} = {

100000
1

} {
100000
2

} 

∴ 𝐿𝐻𝑆 ≠ 𝑅𝐻𝑆   as percentage of error, {
% 𝑒𝑟𝑟𝑜𝑟_𝑏1
% 𝑒𝑟𝑟𝑜𝑟_𝑏2

} = {

100000−100000

100000
𝑥100%

2−1

2
𝑥100%

} = {
0%
50%

} 

Thus, {
𝑥1
𝑥2
} = {

0
1
} is a poor solution as it is different from the actual solution. The solution is sensitive 

to the round-off error which leads to high error discrepancy.  

 

6.2.5 Gauss Elimination with Partial Pivoting (GEwPP) 

The limitation of Naïve Gauss Elimination can be improved by using GEwPP that consists of scaling 

analysis & pivoting strategy: 

(a) Scaling analysis: Indicates the requirement of having pivoting to avoid divide by zero issue.  

[
2 100000
1 1

] {
𝑥1
𝑥2
} = {

100000
2

} 
Scaling the coeffient matrix
 to have max value of 1 

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
  
[
0.00002 1

1 1
] {
𝑥1
𝑥2
} = {

1
2
}

𝑝𝑖𝑣𝑜𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟
 

Rule of thumbs: If the pivot element is smaller than other rows, then pivoting is needed. 

 

(b) Pivoting strategy: Switch row/ column to avoid pivot element to be zero or close to zero 

(i) Naïve Gauss Elimination  - Gaussian Elimination (GE) without pivoting strategy 

[
2 100000
1 1

] {
𝑥1
𝑥2
} = {

100000
2

} 

Note: Previously we remain the original formulation and get poor solution after solving it. 

(ii) Gauss Elimination with Partial Pivoting (GEwPP) -Switch row so that largest element is the pivot 

element (Main Focus). 

[
0.00002 1

1 1
] {
𝑥1
𝑥2
} = {

1
2
} 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑖𝑣𝑜𝑡𝑖𝑛𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     

[
1 1

0.00002 1
] {
𝑥1
𝑥2
} = {

2
1
}

𝑝𝑖𝑣𝑜𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡
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Example of GEwPP 

[
2 100000
1 1

] {
𝑥1
𝑥2
} = {

100000
2

} 

Scaling⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    [
0.00002 1

1 1
] {
𝑥1
𝑥2
} = {

1
2
}                         Note: Scaling indicates partial pivoting is needed  

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑖𝑣𝑜𝑡𝑖𝑛𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    [
1 1

0.00002 1
] {
𝑥1
𝑥2
} = {

2
1
}      Note: Pivot element is the largest after PP. 

[
1 1
0 1

] {
𝑥1
𝑥2
} = {

2
1
}                              Note: Round-off error happens when we use approximate value 

Back substitution #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        𝑥2 = 1 

Back substitution #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        𝑥1 = 2−𝑥2 = 1 

Verification of solution: 

LHS: RHS: 

[
2 100000
1 1

] {
1
1
} = {

100002
2

} {
100000
2

} 

∴ 𝐿𝐻𝑆 ≈ 𝑅𝐻𝑆 as percentage of error, {
% 𝑒𝑟𝑟𝑜𝑟_𝑏1
% 𝑒𝑟𝑟𝑜𝑟_𝑏2

} = {

|100000−100002|

100000
𝑥100%

|2−2|

2
𝑥100%

} = {
0.002%
0%

} 

Thus, {
𝑥1
𝑥2
} = {

1
1
} is an accurate solution as it is close to the actual solution. The solution is less 

sensitive to the round-off error by using the GEwPP, as compares to naïve GE.  

 

Determinant analysis can be done before GEwPP to know if you have well-conditioned system or 

singular system. Precaution: scaling is performed to standardize matrix before calculating determinant. 

Well-conditioned system, 

|•| ≠ 0 

Singular system, |•| = 0 

−1𝑥1 + 1𝑥2 + 2𝑥3 = 2 

3𝑥1 − 1𝑥2 + 1𝑥3 = 6 

−1𝑥1 + 3𝑥2 + 4𝑥3 = 4 

Unique solution for {

𝑥1
𝑥2
𝑥3
} exists  

as |
|

−
1

2

1

2
1

1 −
1

3

1

3

−
1

4

3

4
1

|
| = 0.4 ≠ 0 

−1𝑥1 + 1𝑥2 + 2𝑥3 = 2 

3𝑥1 − 1𝑥2 + 1𝑥3 = 6 

−2𝑥1 + 2𝑥2 + 4𝑥3 = 4 

−1𝑥1 + 1𝑥2 + 2𝑥3 = 2 

3𝑥1 − 1𝑥2 + 1𝑥3 = 6 

−2𝑥1 + 2𝑥2 + 4𝑥3 = 8 

|
|

−
1

2

1

2
1

1 −
1

3

1

3

−
2

4

2

4
1

|
| = 0  

We get no solution or infinite solutions for {

𝑥1
𝑥2
𝑥3
},  we can know 

either it is no solution or infinite solutions by using GEwPP.  

Rule of thumb: Assume that −0.1 ≤ |•| ≤ 0.1 is considered as ill-conditioned system in this study. 
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Example: Solving a well-conditioned system using GEwPP 

[
−1 1 2
3 −1 1
−1 3 4

] {

𝑥1
𝑥2
𝑥3
} = {

2
6
4
} 

Scaling⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    [

−1/2 1/2 1   1
1 −1/3 1/3 2

−1/4 3/4 1   1
]             Pivoting⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   [

1 −1/3 1/3 2

−1/2 1/2 1    1
−1/4 3/4 1   1

] 

Forward elimination #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅2′ = 𝑅2 − 𝑅1 ×
(−
1
2)

1

𝑅3′ = 𝑅3 − 𝑅1 ×
(−
1
4)

1

        [

1 −1/3 1/3   2

0 1/3 7/6 2

0 2/3 13/12 1.5
] 

Scaling⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    [

1 −1/3 1/3 2
0 2/7 1 12/7
0 8/13 1 18/13

]             Pivoting⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   [

1 −1/3 1/3 2
0 8/13 1 18/13
0 2/7 1 12/7

] 

Forward elimination #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅3′′ = 𝑅3′ − 𝑅2′ ×
(
2

7
)

(
8

13
)

       [

1 −1/3 1/3 2
0 8/13 1 18/13
0 0 15/28 15/14

] 

Back substitution ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        𝑥3= 
15/14

15/28
= 2 

                                        𝑥2= 
18/13−(1)𝑥3

8/3
= −1 

                                        𝑥1 =
2−(−1/3)𝑥2−(1/3)𝑥3

1
 = 1 

 

Example: Solving a singular system (infinite solutions case) using GEwPP 

[
−1 1 2
3 −1 1
−2 2 4

] {

𝑥1
𝑥2
𝑥3
} = {

2
6
4
} 

Scaling⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [

−1/2 1/2 1   1
1 −1/3 1/3 2

−2/4 2/4 1   1
] 

Pivoting⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ [
1 −1/3 1/3 2

−1/2 1/2 1    1
−2/4 2/4 1   1

] 

∴ {

𝑥1
𝑥2
𝑥3
} = {

1
−1
2
} is an accurate solution 

as LHS=RHS (verification). 
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Forward elimination #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅2′ = 𝑅2 − 𝑅1 ×
(−
1
2
)

1

𝑅3′ = 𝑅3 − 𝑅1 ×
(−
2
4
)

1

            [

1 −1/3 1/3 2

0 1/3 7/6  2

0 1/3 7/6   2
] 

Forward elimination #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅3′′ = 𝑅3′ − 𝑅2′ ×
(
1
3)

(
1
3
)

            [
1 −1/3 1/3 2

0 1/3 7/6  2
0 0 0     0

] 

Back substitution ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        0𝑥3 =  0 

                                           𝑥3 = 𝑡,  𝑤ℎ𝑒𝑟𝑒 −∞ ≤ 𝑡 ≤ ∞ 

                                          𝑥2  =  
2−(7/6)𝑥3

1/3
 

                                          𝑥1 =
2−(−1/3)𝑥2−(1/3)𝑥3

1
 

 

Example: Solving a singular system (no solution case) using GEwPP 

[
−1 1 2
3 −1 1
−2 2 4

] {

𝑥1
𝑥2
𝑥3
} = {

2
6
8
} 

Scaling⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [

−1/2 1/2 1   1
1 −1/3 1/3 2

−2/4 2/4 1   2
] 

Pivoting⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ [
1 −1/3 1/3 2

−1/2 1/2 1    1
−2/4 2/4 1   2

] 

Forward elimination #1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅2′ = 𝑅2 − 𝑅1 ×
(−
1
2)

1

𝑅3′ = 𝑅3 − 𝑅1 ×
(−
2
4)

1

            [

1 −1/3 1/3 2

0 1/3 7/6  2

0 1/3 7/6   3
] 

Forward elimination #2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅3′′ = 𝑅3′ − 𝑅2′ ×
(
1
3)

(
1
3)

            [
1 −1/3 1/3 2

0 1/3 7/6  2
0 0 0     1

] 

Back substitution ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗        0𝑥3 =  1           ∴ 𝑁𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑒 𝑒𝑞𝑛𝑠.  

∴ {

𝑥1
𝑥2
𝑥3
} =

{
 
 

 
 2−(−1/3)[

2−(7/6)𝑡

1/3
]−(1/3)𝑡

1
2−(7/6)𝑡

1/3

𝑡 }
 
 

 
 

  

Infinite solutions that can satisfy the 

eqns. 
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6.3 Row Echelon Form, Reduced Row Echelon Form, Rank, & Linear Dependency  

After the GEwPP, the coefficient matrix will be in the Row Echelon Form (REF). From the previous 

example, we obtain: 

Well-conditioned system, |•| ≠ 0 Singular system, |•| = 0 

−1𝑥1 + 1𝑥2 + 2𝑥3 = 2 

3𝑥1 − 1𝑥2 + 1𝑥3 = 6 

−1𝑥1 + 3𝑥2 + 4𝑥3 = 4 

Coefficient matrix, 

[𝐴] = [
−1 1 2
3 −1 1
−1 3 4

] 

Coefficient matrix after GEwPP is 

in REF, 

[𝐴]𝐺𝐸𝑤𝑃𝑃 = [

1 −1/3 1/3
0 8/3 1
0 0 15/28

] 

−1𝑥1 + 1𝑥2 + 2𝑥3 = 2 

3𝑥1 − 1𝑥2 + 1𝑥3 = 6 

−2𝑥1 + 2𝑥2 + 4𝑥3 = 4 

−1𝑥1 + 1𝑥2 + 2𝑥3 = 2 

3𝑥1 − 1𝑥2 + 1𝑥3 = 6 

−2𝑥1 + 2𝑥2 + 4𝑥3 = 8 

Coefficient matrix, 

[𝐴] = [
−1 1 2
3 −1 1
−2 2 4

] 

Coefficient matrix after GEwPP is in REF, 

[𝐴]𝐺𝐸𝑤𝑃𝑃 = [
1 −1/3 1/3
0 1/3 7/6
0 0 0

] 

REF has the following characteristics: 

• Zero row(s) are always below non-zero rows if there is any. 

• Pivot element of the non-zero rows at the bottom must be at the right of the pivot element 

above it. 

• Non-unique; can be in different scale 

REF can be further reduced to Reduced Row Echelon Form (RREF) by using Gauss-Jordan Elimination 

with Partial Pivoting (GJEwPP) as shown in the example below: 

[𝐴]𝐺𝐸𝑤𝑃𝑃 = [

1 −1/3 1/3
0 8/3 1
0 0 15/28

] 

Scale the pivot element to 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅2 → 𝑅2 ×
3

8

𝑅3 → 𝑅3 ×
28

15

      [
1 −1/3 1/3
0 1 3/8
0 0 1

] 

Forward elimination ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅1 → 𝑅1 − 𝑅2 ×
(−
1

3
)

1

                 [
1 0 11/24
0 1 3/8
0 0 1

] 

Forward elimination ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅1 → 𝑅1 − 𝑅3 ×
(
11

24
)

1

𝑅2 → 𝑅2 − 𝑅3 ×
(
3

8
)

1

                 [
1 0 0
0 1 0
0 0 1

] 

[𝐴]𝐺𝐸𝑤𝑃𝑃 = [
1 −1/3 1/3
0 1/3 7/6
0 0 0

] 

Scale the pivot element to 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅2 → 𝑅2 × 3

𝑅3 → 𝑅3 ×
−1

1.25

      [
1 −1/3 1/3
0 1 3.5
0 0 0

] 

Forward elimination ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑅1 → 𝑅1 − 𝑅2 ×
(−
1

3
)

1

                 [
1 0 1.5
0 1 3.5
0 0 0

] 
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RREF has the following characteristics: 

• Also a REF  

• Unique; Scale the pivot element to 1 

• Element above the pivot element is 0 

Once RREF is obtained, rank of a matrix can be evaluated by counting the number of non-zero rows 

of RREF. Note: Rank is the maximum number of linearly independent vector. 

Well-conditioned system, |•| ≠ 0 Singular system, |•| = 0 

REF= [

1 −1/3 1/3
0 8/3 1
0 0 15/28

] 

RREF= [
1 0 0
0 1 0
0 0 1

] 

Rank=3 

It means that all the 3 equations given are linear 

independent, therefore finding 3 unknowns 

from 3 linear independent equations are 

possible. 

−1𝑥1 + 1𝑥2 + 2𝑥3 = 2 

3𝑥1 − 1𝑥2 + 1𝑥3 = 6 

−1𝑥1 + 3𝑥2 + 4𝑥3 = 4 

∴ [𝐴] = 𝐹𝑢𝑙𝑙 𝑟𝑎𝑛𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 

REF= [
1 −1/3 1/3
0 1/3 7/6
0 0 0

] 

RREF= [
1 0 1.5
0 1 3.5
0 0 0

] 

Rank=2 

It means that only 2 out of 3 equations given are 

linear independent, therefore finding 3 

unknowns from 2 linear independent equations 

are difficult. 

−1𝑥1 + 1𝑥2 + 2𝑥3 = 2 

3𝑥1 − 1𝑥2 + 1𝑥3 = 6 

−2𝑥1 + 2𝑥2 + 4𝑥3 = 4 

∴ [𝐴] = 𝑅𝑎𝑛𝑘 − 𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 

As a rule of thumbs, 𝑛 linearly independent equations are required to solve 𝑛 unknowns. To solve 3 

unknowns, if we have less than 3 linearly independent equations, i.e. more unknowns than knowns, 

then we get the singular system issue.  

6.4 Engineering Application of Non-Homogeneous System of Linear Equations  

(a) Transform information into multiple linear algebraic equations to be solved simultaneously. 

The amounts of metal, plastic, and 

rubber needed for electrical 

components types #1, #2, and #3 are 

shown in the following Table.

Note: It is important for student to convert the 

information into multiple linear algebraic 

equations & matrix format. 

If totals of 2120, 43.4 and 164 g of metal, plastic, and 

rubber respectively are available each day. How many 

components can be produced per day? 

15𝐶𝑜𝑚𝑝1 + 17𝐶𝑜𝑚𝑝2 + 19𝐶𝑜𝑚𝑝3 =  2120 

0.25𝐶𝑜𝑚𝑝1 + 0.33𝐶𝑜𝑚𝑝2 + 0.42𝐶𝑜𝑚𝑝3 = 43.4 

1.0𝐶𝑜𝑚𝑝1 + 1.2𝐶𝑜𝑚𝑝2 + 1.6𝐶𝑜𝑚𝑝3 = 164 

[
15 17 19
0.25 0.33 0.42
1.0 1.2 1.6

] {

𝐶𝑜𝑚𝑝1
𝐶𝑜𝑚𝑝2
𝐶𝑜𝑚𝑝3

} = {
2120
43.4
164

} 

Then, it can be solved by using the GEwPP, Cramer’s rule, etc. 
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(b) Electrical system 

 

Source: 
https://www.youtube.com/watch?v=2naaCxfbq_M 

[

𝑅𝐴 + 𝑅𝐵 −𝑅𝐵 −𝑅𝐴
−𝑅𝐵 𝑅𝐵 + 𝑅𝐶 −𝑅𝐶
−𝑅𝐴 −𝑅𝐶 𝑅𝐴 + 𝑅𝐶 + 𝑅𝐷

] {
𝐼1
𝐼2
𝐼3

} = {
+𝑉1
−𝑉2
+𝑉3

} 

Eg. If the resistance, 𝑅 and voltage, 𝑉 are given, estimate 

the output currents, 𝐼  of the 3 dof electrical circuit 

system. 

[
4 + 2 −2 −4
−2 2 + 8 −8
−4 −8 4 + 6 + 8

] {
𝐼1
𝐼2
𝐼3

} = {
16
−40
0
} 

Note: The derivation of the eqns involves theory of circuit, thus it is not 

examined in this study. 

(c) Mechanical vibration system 

 

Source: 
https://www.brown.edu/Departments/Engineering/Courses/

En4/Notes/vibrations_mdof/vibrations_mdof.htm 

Assume 𝑓1 = 𝐹1𝑐𝑜𝑠𝜔𝑡, 𝑓2 = 𝐹2𝑐𝑜𝑠𝜔𝑡, 𝑥1 = 𝑋1𝑐𝑜𝑠𝜔𝑡, 

𝑥2 = 𝑋2𝑐𝑜𝑠𝜔𝑡,  �̈�1 = −𝑋1𝜔
2, �̈�2 = −𝑋2𝜔

2, 𝜔 = 10  

[
𝑘1 + 𝑘2 − 𝜔

2𝑚1 −𝑘2
−𝑘2 𝑘2 + 𝑘3 −𝜔

2𝑚2
] {
𝑋1
𝑋2
} = {

𝐹1
𝐹2
} 

Eg. If the stiffness, 𝑘 , mass, 𝑚, force, 𝐹, and excitation 

frequency, 𝜔 are given, estimate the output response of 

the 2 dof mass-spring vibration system. 

[
400 − 102(40) −200

−200 400 − 102(40)
] {
𝑋1
𝑋2
} = {

𝐹1
𝐹2
} 

Note: The derivation of the eqns involves theory of vibration, thus it is 

not examined in this study. 

(d) Dynamic system 

 

[

𝑚1 1 0
𝑚2 −1 1
𝑚3 0 −1

] {
𝑎
𝑇
𝑅
} = {

𝑚1𝑔 − 𝑐1𝑣
𝑚2𝑔 − 𝑐2𝑣
𝑚3𝑔 − 𝑐3𝑣

} 

Eg. If the mass, 𝑚, drag coeffient, 𝑐, and free fall velocity, 

𝑣 are given, estimate the output tension & acceleration of 

the 3 dof falling parachutists. 

[
70 1 0
60 −1 1
40 0 −1

] {
𝑎
𝑇
𝑅
} = {

70(9.81) − 10(5)
60(9.81) − 14(5)
40(9.81) − 17(5)

} 

Note: The derivation of the eqns involves theory of dynamic, thus it is 

not examined in this study. 

Advanced applications of matrix algebra including transformation matrix, image processing, 

signal processing, finite element simulation, page rank algorithm,  Hill Cipher encryption, etc. 

Thus, mastering matrix algebra is important and it has huge impact.  




