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INTEGRATION 
WEEK 8: INTEGRATION 

8.1 TERMINOLOGY AND BASIC INTEGRATION RULES  

There are two types of integrals: Indefinite and Definite. Indefinite integrals are those with no limits 

and definite integrals have limits. When dealing with indefinite integrals, you need to add a constant 

of integration. For example, if integrating a function 𝑓(𝑥) with respect to x: 

∫𝑓(𝑥)  𝑑𝑥 = 𝑔(𝑥) + 𝐶, 

Where 𝑔(𝑥) is the integrated function. C is an arbitrary constant called the constant of integration 

and 𝑑𝑥 indicated the variable with respect to which we are integrating, in this case, 𝑥. The function 

being integrated,  𝑓(𝑥), is called the integrand.  

The integral of many functions are well known, and there are useful rules to work out the integral of 

more complication functions, which are shown in Figure 8.1 below.  The summary of the common 

procedures for fitting integrands to the basic integration rules is given in Figure 8.2. 

8.2 TECHNIQUES OF INTEGRATION 

This section will discussed in more detail three methods of integration: Integration by parts, the 

substitution method and partial fractions. 

8.2.1 INTEGRATION BY PARTS 

One of the important integration techniques is called integration by parts. This technique can be 

applied to a wide variety of functions and is particularly useful for integrands involving products of 

algebraic and transcendental functions.  

If 𝑓 and 𝑔 are differentiable functions, then the Product Rule yields 

𝑑

𝑑𝑥
[𝑓(𝑥)𝑔(𝑥)] = 𝑓(𝑥)𝑔′(𝑥) + 𝑔(𝑥)𝑓′(𝑥)              ……..(1) 

In the form of indefinite integrals, Eq (1) becomes 

∫[𝑓(𝑥)𝑔′(𝑥) + 𝑔(𝑥)𝑓′(𝑥)]𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥) 

Then, rearranging the equation yields 

∫𝑓(𝑥)𝑔′(𝑥) 𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥) − ∫𝑔(𝑥)𝑓′(𝑥) 𝑑𝑥          ……(2) 

Eq (2) gives the formula for integration by parts. 
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Figure 8.1: Basic Integration Rules (𝑎 > 0) 
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It is perhaps easier to remember in the following notation.  

Let 𝑢 = 𝑓(𝑥) and 𝑣 = 𝑔(𝑥). Then the differentials are  𝑑𝑢 = 𝑓′(𝑥) 𝑑𝑥  and 𝑑𝑣 = 𝑔′(𝑥) 𝑑𝑥. So, by 

the Substitution Rule, the formula for integration by parts becomes  

∫𝑢 𝑑𝑣 = 𝑢𝑣 − ∫𝑣 𝑑𝑢 

 

Example 8.1 

1. Find ∫𝑥 sin 𝑥 𝑑𝑥  

 

Solution 

First method 

Suppose we choose  𝑓(𝑥) = 𝑥 and 𝑔′(𝑥) = sin𝑥. Then 𝑓′(𝑥) = 1 and 𝑔(𝑥) = −cos𝑥. Note that for 

𝑔, we can choose any antiderivative of 𝑔′. Thus, using the formula in Eq 2, 

∫𝑥 sin 𝑥 𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥) − ∫𝑔(𝑥)𝑓′(𝑥)𝑑𝑥 

                       = 𝑥(−cos𝑥) − ∫(− cos 𝑥) 𝑑𝑥 

              = −𝑥 cos 𝑥 +∫cos𝑥  𝑑𝑥 

           = −𝑥 cos𝑥 + sin𝑥 + 𝐶 

Figure 8.2: Procedures for Fitting Integrands to Basic Rule 
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Second method 

Let: 

𝑢 = 𝑥                                𝑑𝑣 = sin 𝑥 𝑑𝑥 

𝑑𝑢 = 𝑑𝑥                            𝑣 = − cos𝑥 

 

∫𝑥 sin𝑥 𝑑𝑥 =  ∫𝑥   sin 𝑥 𝑑𝑥 

  

                                                  = 𝑥(−cos 𝑥) − ∫(−cos 𝑥) 𝑑𝑥 

                                        = −𝑥 cos 𝑥 + ∫cos 𝑥  𝑑𝑥 

                                    = −𝑥 cos 𝑥 + sin 𝑥 + 𝐶 

We can evaluate definite integrals by parts. By evaluating both sides of Eq 2 (formula for integration 

by parts) between 𝑎 and 𝑏, assuming 𝑓′ and 𝑔′ are continuous, and using the Fundamental Theorem 

of Calculus, we get 

∫ 𝑓(𝑥)𝑔′(𝑥)𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥)]
𝑎

𝑏

−∫ 𝑔(𝑥)
𝑏

𝑎

𝑏

𝑎

𝑓′(𝑥) 𝑑𝑥 

We could also use trigonometric identities to integrate certain combinations of trigonometric 

functions.  

 

Example 8.2 

Find ∫ sin5 𝑥 cos2𝑥 𝑑𝑥 

 

Solution 

We could convert  cos2𝑥 to 1 −  sin2𝑥, but we would be left with an expression in terms of  

sin 𝑥 with no extra cos 𝑥 factor. Therefore, we could separate a single sine factor and rewrite the 

remaining sin4 factor in terms of cos 𝑥 factor.  

sin5𝑥  cos2𝑥 =  ( sin2𝑥)2 cos2𝑥 sin 𝑥 

                                 = (1 −  cos2𝑥)2 cos2𝑥 sin𝑥   

  Substituting  𝑢 = cos 𝑥, then 𝑑𝑢 = −sin 𝑥  𝑑𝑥 

∫sin5 𝑥 cos2𝑥 𝑑𝑥 = ∫(1 −  cos2𝑥 )2 cos2𝑥 sin𝑥  𝑑𝑥 

u dv 

u v u du 
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               =  ∫(1 − 𝑢2)2𝑢2(−𝑑𝑢) 

               = −∫(𝑢2 − 2𝑢4 + 𝑢6)𝑑𝑢 

                     = −(
𝑢3

3
− 2

𝑢5

5
+
𝑢7

7
) + 𝐶 

                                           = − 
1

3
cos3𝑥 +  

2

5
cos5𝑥 −

1

7
 cos7𝑥 + 𝐶 

We can use a similar strategy to evaluate integrals of the form ∫ tan𝑚 𝑥 sec𝑛𝑥 𝑑𝑥, where 𝑚 >

0, 𝑛 > 0 are integers.  

Since (
𝑑

𝑑𝑥
) tan 𝑥 = sec2𝑥, we could separate a sec2𝑥 factor and convert the remaining (even) power 

of secant to an expression involving tangent using the following identity: 

sec2𝑥 = 1 + tan2𝑥 

Another way is to separate a sec 𝑥 tan 𝑥 factor and convert the remaining (even) power of tangent 

to secant since (
𝑑

𝑑𝑥
) sec𝑥 = sec 𝑥 tan 𝑥 . 

As for other cases, the use of identities, integration by parts, and occasionally a little ingenuity may 

come handy. The following formulas and trigonometric identities are also useful: 

∫tan 𝑥  𝑑𝑥 = ln|sec 𝑥| + 𝐶 

∫sec 𝑥  𝑑𝑥 = ln|sec 𝑥 + tan 𝑥| + 𝐶 

sin𝐴 cos𝐵 =  
1

2
[sin(𝐴 − 𝐵) + sin(𝐴 + 𝐵)] 

sin𝐴 sin𝐵 = 
1

2
[cos(𝐴 − 𝐵) − cos(𝐴 + 𝐵)] 

cos𝐴 cos𝐵 =  
1

2
[cos(𝐴 − 𝐵) + cos(𝐴 + 𝐵)] 

Example 8.3  

Find ∫(𝑥2)(𝑒𝑥) 𝑑𝑥 

 

Solution  

Observe that the above integral cannot be solved by any of our previous methods. Further, the 

integrals of both the functions (i.e., x2 and ex ) are equally easy. However, since x2 is a power function, 

we choose ex as the second function. 
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 [ Note : Of the two functions in the integrand, if one function is a power function (i.e., x, x2 , x3 , ...) 

and the other function is easy to integrate, then we choose the other one as the second function. If 

power function is chosen as second function, then its index will keep on increasing when the rule of 

integration by parts is applied. As a result, the resulting integral so obtained will be more difficult to 

evaluate, than the given integral.] 

Lets, integral of    ∫(𝑥2)(𝑒𝑥) 𝑑𝑥  is  using    {
∫ 𝑒𝑥𝑑𝑥 =  𝑒𝑥

𝑑

𝑑𝑥
(𝑥2)  =  2𝑥

 

Thus,  

    = 𝑥2. 𝑒𝑥  − ∫(2𝑥) . 𝑒𝑥  𝑑𝑥 

    = 𝑥2. 𝑒𝑥  −  2 ∫ 𝑥 . 𝑒𝑥 𝑑𝑥 

    = 𝑥2. 𝑒𝑥  − 2 [𝑥 𝑒𝑥  −  ∫ 1 . 𝑒𝑥  𝑑𝑥 ] 

    = 𝑥2 . 𝑒𝑥  −  2𝑥 𝑒𝑥  +  2 𝑒𝑥  +  𝑐     ans  

 

Now let us see what happens if we choose x2 as the second function. 

Consider the integration of  ∫(𝑥2)(𝑒𝑥) 𝑑𝑥 is  using   {
∫𝑥2 𝑑𝑥 =

𝑥3

3
 

𝑑

𝑑𝑥
 𝑑𝑥 =  𝑒𝑥

 

Integrating by parts, we get  

 = 𝑒𝑥  .
𝑥3

3
 − ∫ 𝑒𝑥  .

𝑥3

3
 𝑑𝑥 

 = 
1

3
𝑒𝑥. 𝑥3  −  

1

3
 ∫ 𝑒𝑥  . 𝑥3 𝑑𝑥  

Observe that the resulting integral on right-hand side is more complicated than the given integral. 

This is due to our wrong choice of the second function. 

Example 8.4 

Find ∫(𝑥2)(𝑐𝑜𝑠 𝑥) 𝑑𝑥 

 

Solution 

Observe that  

(i) The given integral cannot be evaluated by any of our previous methods.  

(ii) The integrals of both the parts (i.e., x2 and cos x) are equally simple. But we should not 

choose x2 as a second function. 

Therefore, we choose x2 as first function, and cos x as second function 

 

   {
∫ 𝑒𝑥𝑑𝑥 =  𝑒𝑥

𝑑

𝑑𝑥
(𝑥)  =  1
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Thus, the integration of  ∫(𝑥2)(𝑐𝑜𝑠 𝑥) 𝑑𝑥 will use the {

𝑑

𝑑𝑥
 𝑥2  =  2𝑥

∫ 𝑐𝑜𝑠 𝑥 𝑑𝑥 =  𝑠𝑖𝑛 𝑥

 

 

Now, integrating by parts, we get, 

= 𝑥2 . 𝑠𝑖𝑛 𝑥 − ∫(2𝑥) (𝑠𝑖𝑛  𝑥) 𝑑𝑥  

= 𝑥2 . 𝑠𝑖𝑛 𝑥 −  2 ∫ 𝑥 𝑠𝑖𝑛 𝑥 𝑑𝑥  

 

Again, integrating by parts, the resulting integral, we get, 

=  𝑥2 . 𝑠𝑖𝑛 𝑥 −  2 [𝑥. (−𝑐𝑜𝑠𝑥) − ∫(1)(−𝑐𝑜𝑠𝑥)𝑑𝑥] 

 =  𝑥2 . 𝑠𝑖𝑛 𝑥 +  2𝑥 𝑐𝑜𝑠 𝑥 −  2 ∫  𝑐𝑜𝑠 𝑥 𝑑𝑥  

= x2 sin x + 2x cos x -2 (sin x) + c 

= x2 sin x + 2x cos x -2 sin x + c   (ans) 

 

8.2.2 TRIGONOMETRIC SUBSTITUTION 

In finding the area of a circle or an ellipse, an integral of the form ∫√𝑎2 − 𝑥2 𝑑𝑥  arises, where 𝑎 >

0. If it were ∫𝑥√𝑎2 − 𝑥2 𝑑𝑥, the substitution  𝑢 = 𝑎2 − 𝑥2 would be effective. However, 

∫√𝑎2 − 𝑥2 𝑑𝑥 …… (3) 

 Eq (3) would be more challenging. If we change the variable from 𝑥 to 𝜃 by the substitution of 𝑥 =

𝑎 sin 𝜃. Then, the root sign of Eq (3) can be removed by making use of the identity 1 − sin2𝜃 =

cos2𝜃. This is shown as below: 

√𝑎2 − 𝑥2 = √𝑎2 − 𝑎2sin2𝜃 

                   = √𝑎2(1 − sin2𝜃 

         = √𝑎2cos2𝜃 

= 𝑎|cos 𝜃| 

Notice the difference between the substitution 𝑢 = 𝑎2 − 𝑥2 (in which the new variable is a function 

of the old one) and the substitution 𝑥 = 𝑎 sin 𝜃 (the old variable is a function of the new one). 

{
 
 

 
 

𝑑

𝑑𝑥
 (𝑥)  =  1

∫𝑠𝑖𝑛 𝑥 𝑑𝑥 =  −𝑐𝑜𝑠 𝑥
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In general, we can make a substitution of the form 𝑥 = 𝑔(𝑡) by using the Substitution Rule in 

reverse. To make our calculations simpler, we assume that g has an inverse function; that is, g is 

one-to-one. 

In this case, if we replace 𝑢 by 𝑥 and 𝑥 by 𝑡 in the Substitution Rule, we get 

∫𝑓(𝑥)  𝑑𝑥 = ∫𝑓(𝑔(𝑡))𝑔′(𝑡)𝑑𝑡 

This type of substitution is called the inverse substitution. The inverse substitution of 𝑥 = 𝑎 sin𝜃 can 

be made provided that it defines a one-to-one function. This can be accomplished by restricting 𝜃 to 

lie in the interval [−
𝜋

2
,
𝜋

2
] 

Table 8.1 below shows a list of trigonometric substitutions which are effective for the given radical 

expressions because of the specified trigonometric identities. The restriction on 𝜃 is imposed in each 

of the cases shown in Table 8.1 to ensure that the function that defines the substitution is one-to-

one. 

 

Table 8.1: Table of Trigonometric Substitution 

 

 

Example 8.5 

Evaluate 

∫
√9 − 𝑥2

𝑥2
 𝑑𝑥 

 

Solution 

Let 𝑥 = 3 sin 𝜃, where −𝜋/2 ≤ 𝜃 ≤ 𝜋/2. Then, 𝑑𝑥 = 3 cos 𝜃 𝑑𝜃. 

√9 − 𝑥2 = √9 − 9sin2𝜃 

           = √9 cos2𝜃 
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        = 3| cos 𝜃| 

      = 3 cos 𝜃 

(Note that  cos 𝜃 ≥ 0 because −𝜋/2 ≤ 𝜃 ≤ 𝜋/2.) Thus using the Inverse Substitution Rule: 

∫
√9 − 𝑥2

𝑥2
 𝑑𝑥 = ∫

3 cos𝜃

9sin2𝜃
3 cos 𝜃  𝑑𝜃 

                   = ∫
cos2𝜃

sin2𝜃
𝑑𝜃 

                  = ∫cot2𝜃 𝑑𝜃 

                           = ∫(csc2𝜃 − 1)𝑑𝜃 

                       = − cot 𝜃 − 𝜃 + 𝐶 

Since this is an indefinite integral, we must return to the original variable x. This can be done either 

by  

using trigonometric identities to express cot 𝜃 in terms of sin𝜃 = 𝑥/3 or by drawing a diagram, as in 

Figure 8.3, where 𝜃 is interpreted as an angle of a right triangle. 

 

 

 

 

 

 

 

Based on the Pythagorean Theorem, the length of the adjacent side can be expressed as 

√9 − 𝑥2 

Then, we can simply read the value of cot 𝜃 from the figure: 

cot 𝜃 =
√9 − 𝑥2

𝑥
 

(Although 𝜃 > 0 in the diagram, this expression for cot 𝜃 is valid even when 𝜃 < 0). Since 

sin𝜃 = 𝑥/3, then  𝜃 = sin−1(𝑥/3). Therefore 

∫
√9 − 𝑥2

𝑥2
 𝑑𝑥 = −

√9 − 𝑥2

𝑥
− sin−1 (

𝑥

3
) + 𝐶 

Figure 8.3: sin𝜃 = 𝑥/3 
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Example 8.6 

Find  

∫
𝑥3

√9 − 𝑥2
 𝑑𝑥  

 

Solution  

Lets , x= 3 sin t  

 

= 27∫
𝑠𝑖𝑛3 𝑡 𝑐𝑜𝑠 𝑡

√1− 𝑠𝑖𝑛2 𝑡
 𝑑𝑡 

= 27 ∫ 𝑠𝑖𝑛3 𝑡 𝑑𝑥 

= 27 ∫(1 − 𝑐𝑜𝑠2 𝑡)  𝑠𝑖𝑛 𝑡 𝑑𝑥 

= 27 (− 𝑐𝑜𝑠 𝑡 +  
𝑐𝑜𝑠 3 𝑡

3
)  +  𝐶 

= 27 (− √1 − 𝑠𝑖𝑛2 𝑡  +  
1

3
 (1 − 𝑠𝑖𝑛2 𝑡)3/2) +  𝐶 

= − 9 √9 − 𝑥2  +  
1

3
 (9 − 𝑥2)3/2  +  𝐶 

 

Where, x = 3 sin t , dx = 3 cos t dt 

 

8.2.3 PARTIAL FRACTIONS 

This section demonstrates a method to integrate any rational function (a ratio of polynomials) by 

expressing it as a sum of simpler fractions, called partial fractions, that we already know how to 

integrate. 

To illustrate the method, observe that by taking the fractions 
2

(𝑥−1)
  and 

1

(𝑥+2)
 to a common 

denominator, the expression becomes 

2

(𝑥 − 1)
−

1

(𝑥 + 2)
=
2(𝑥 + 2) − (𝑥 − 1)

(𝑥 − 1)(𝑥 + 2)
 

                   =
𝑥 + 5

𝑥2 + 𝑥 − 2
 

If we reverse the procedure, we see how to integrate the function on the right side of the following 

equation. 
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∫
𝑥 + 5

𝑥2 + 𝑥 − 2
 𝑑𝑥 =  ∫(

2

(𝑥 − 1)
−

1

(𝑥 + 2)
) 𝑑𝑥 

                                = 2 ln|𝑥 − 1| − ln|𝑥 + 2| + 𝐶 

In order to illustrate the method, let 

𝑓(𝑥) =
𝑃(𝑥)

𝑄(𝑥)
 

Be a rational function where 𝑃(𝑥) and 𝑄(𝑥) are polynomials. The function 𝑓(𝑥) can be expressed as 

a sum of simpler fractions provided that the degree of P is less than the degree of Q. Such a rational 

function is called proper. 

If, 

𝑃(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0 

Where 𝑎𝑛 ≠ 0, then the degree of P is n and we write deg(P) = n. If f is improper, that is, deg(P)  

deg(Q), then we must take the preliminary step of dividing Q into P (by long division) until a 

remainder R (x) is obtained such that deg(R) < deg(Q). 

The division statement is 

𝑓(𝑥) =
𝑃(𝑥)

𝑄(𝑥)
= 𝑆(𝑥) +

𝑅(𝑥)

𝑄(𝑥)
… . . (4) 

where S and R are also polynomials. 

As the next example illustrates, sometimes this preliminary step is all that is required. 

 

Example 8.7 

Find 

∫
𝑥3 + 𝑥

𝑥 − 1
 𝑑𝑥 

 

Solution 

Since the degree of the numerator is greater than the degree of the denominator, we first perform 

the long division.  

∫
𝑥3 + 𝑥

𝑥 − 1
 𝑑𝑥 = ∫(𝑥2 + 𝑥 + 2 +

2

𝑥 − 1
)𝑑𝑥 

                         =
𝑥3

3
+
𝑥2

2
+ 2𝑥 + 2 ln|𝑥 − 1| + 𝐶 

From Eq (4), if the denominator is more complicated, then the next step is to factor the denominator     

Q (x) as far as possible. It can be shown that any polynomial Q can be factored as a product of linear 
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factors (of the form ax + b) and irreducible quadratic factors (of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where 𝑏2 −

4𝑎𝑐 < 0.  

For example, if 𝑄(𝑥) = 𝑥4 − 16, we could factor it as 

𝑄(𝑥) = (𝑥2 − 4)(𝑥2 + 4) = (𝑥 − 2)(𝑥 + 2)(𝑥2 + 4) 

Then, the next step is to express the proper rational function 𝑅(𝑥)/𝑄(𝑥) in Eq (4) as  a sum of partial 

fractions of the following form 

𝐴

(𝑎𝑥 + 𝑏)𝑖
                                𝑜𝑟           

𝐴𝑥 + 𝐵

(𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑗
 

A theorem in algebra guarantees that it is always possible to do this. We explain the details for the 

four cases that occur: 

a) The denominator 𝑄(𝑥) is a product of distinct linear factors 

b) 𝑄(𝑥) is a product of linear factors, some of which are repeated 

c) 𝑄(𝑥)  contains irreducible quadratic factors, none of which is repeated 

d) 𝑄(𝑥)  contains a repeated irreducible quadratic factor 

 

8.2.3.1 CASE 1: Q(X) IS A PRODUCT OF DISTINCT LINEAR FACTORS  

For this case, we could expressed 𝑄(𝑥) as 

𝑄(𝑥) = (𝑎1𝑥 + 𝑏1)(𝑎2𝑥 + 𝑏2)… (𝑎𝑘𝑥 + 𝑏𝑘), 

Where no factor is repeated and no factor is a constant multiple of another. Hence, in this case, the 

partial fraction theorem states that there exist constant 𝐴1, 𝐴2, … , 𝐴𝑘 such that 

𝑅(𝑥)

𝑄(𝑥)
=

𝐴1
𝑎1𝑥 + 𝑏1

+
𝐴2

𝑎2𝑥 + 𝑏2
+⋯+

𝐴𝑘
𝑎𝑘𝑥 + 𝑏𝑘

… . (5) 

 

Example 8.8 

Evaluate  

∫
𝑥2 + 2𝑥 − 1

2𝑥3 + 3𝑥2 − 2𝑥
 𝑑𝑥 

 

Solution 

Since the degree of the numerator is less than the degree of the denominator, we don’t need to 

divide. We factor the denominator as 

2𝑥3 + 3𝑥2 − 2𝑥 = 𝑥(2𝑥2 + 3𝑥 − 2) 

= 𝑥(2𝑥 − 1)(𝑥 + 2) 
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Then,  

𝑥2 + 2𝑥 − 1

𝑥(2𝑥 − 1)(𝑥 + 2)
=
𝐴

𝑥
+

𝐵

2𝑥 − 1
+

𝐶

𝑥 + 2
 

In order to determine the constant 𝐴, 𝐵 and C, multiply both sides of the equation by the product of 

the denominators to give 

𝑥2 + 2𝑥 − 1 = 𝐴(2𝑥 − 1)(𝑥 + 2) + 𝐵𝑥(𝑥 + 2) + 𝐶𝑥(2𝑥 − 1) 

                  = (2𝐴 + 𝐵 + 2𝐶)𝑥2 + (3𝐴 + 2𝐵 − 𝐶)𝑥 − 2𝐴 

System of equations: 

2𝐴 + 𝐵 + 2𝐶 = 1 

3𝐴 + 2𝐵 − 𝐶 = 2 

−2𝐴 = −1 

Thus, 𝐴 =
1

2
, 𝐵 =

1

5
, 𝐶 = −

1

10
 

∫
𝑥2 + 2𝑥 − 1

2𝑥3 + 3𝑥2 − 2𝑥
 𝑑𝑥 = ∫(

1

2

1

𝑥
+
1

5

1

2𝑥 − 1
−
1

10

1

𝑥 + 2
)𝑑𝑥 

                                                           =
1

2
ln|𝑥| +

1

10
ln|2𝑥 − 1| −

1

10
ln|𝑥 + 2| + 𝐾 

 

Note that in integrating the middle term, the following substitutions have been made: 

𝑢 = 2𝑥 − 1,         𝑑𝑢 = 2𝑑𝑥,    then 𝑑𝑥 =
1

2
𝑑𝑢 

 

8.2.3.2 CASE 2: Q(X) IS A PRODUCT OF DISTINCT LINEAR FACTORS, SOME OF WHICH 

ARE REPEATED 

Suppose the first linear factor (𝑎1𝑥 + 𝑏1) is repeated 𝑟 times, that is, (𝑎1𝑥 + 𝑏1)
𝑟 occurs in the 

factorization of 𝑄(𝑥). Then, instead of the single term in Eq (5), we could use 

𝐴1
𝑎1𝑥 + 𝑏1

+
𝐴2

(𝑎1𝑥 + 𝑏1)
2
+⋯+

𝐴𝑟
(𝑎1𝑥 + 𝑏1)

𝑟
… . (6) 

 

Example 8.9 

Find  

∫
𝑥4 − 2𝑥2 + 4𝑥 + 1

𝑥3 − 𝑥2 − 𝑥 + 1
 𝑑𝑥 
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Solution 

The first step is to divide using long division, which gives 

𝑥4 − 2𝑥2 + 4𝑥 + 1

𝑥3 − 𝑥2 − 𝑥 + 1
= 𝑥 + 1 +

4𝑥

𝑥3 − 𝑥2 − 𝑥 + 1
 

The next step is to factor out the denominator 

𝑥3 − 𝑥2 − 𝑥 + 1 = (𝑥 − 1)(𝑥2 − 1) 

= (𝑥 − 1)(𝑥 − 1)(𝑥 + 1) 

= (𝑥 − 1)2(𝑥 + 1) 

Hence,  

4𝑥

(𝑥 − 1)2(𝑥 + 1)
=

𝐴

𝑥 − 1
+

𝐵

(𝑥 − 1)2
+

𝐶

𝑥 + 1
 

4𝑥 = 𝐴(𝑥 − 1)(𝑥 + 1) + 𝐵(𝑥 + 1) + 𝐶(𝑥 − 1)2 

Equate coefficients, we obtain 𝐴 = 1, 𝐵 = 2, 𝐶 = −1. Hence,  

∫
𝑥4 − 2𝑥2 + 4𝑥 + 1

𝑥3 − 𝑥2 − 𝑥 + 1
 𝑑𝑥 = ∫ [𝑥 + 1 +

1

𝑥 − 1
+

2

(𝑥 − 1)2
−

1

𝑥 + 1
]  𝑑𝑥 

                                                   =
𝑥2

2
+ 𝑥 + ln|𝑥 − 1| −

2

𝑥 − 1
− ln|𝑥 + 1| + 𝐾 

                           =
𝑥2

2
+ 𝑥 −

2

𝑥 − 1
+ l n |

𝑥 − 1

𝑥 + 1
|+𝐾 

 

 

Try this, 

Please integrate, ∫
𝑥2 − 𝑥 + 1

(𝑥 + 1)3
 𝑑𝑥 

Answer:  

 

 

8.2.3.3 CASE 3: Q(X) CONTAINS IRREDUCIBLE QUADRATIC FACTORS, NONE OF WHICH 

IS REPEATED 

If 𝑄(𝑥) has the factor 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where 𝑏2 − 4𝑎𝑐 < 0, then, in addition to the partial fractions in 

Eq (5) and (6), the expression for 𝑅(𝑥)/𝑄(𝑥) will have a term of the form 
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𝐴𝑥 + 𝐵

𝑎𝑥2 + 𝑏𝑥 + 𝑐
… . . (7) 

Where A and B are constants to be determined. The term in Eq (7) can be integrated by completing 

squares (if necessary) and using the following formula 

∫
𝑑𝑥

𝑥2 + 𝑎2
=
1

𝑎
tan−1 (

𝑥

𝑎
) + 𝐶 

 

Example 8.10 

Evaluate 

∫
4𝑥2 − 3𝑥 + 2

4𝑥2 − 4𝑥 + 3
𝑑𝑥 

 

Solution 

Since the degree of the numerator is not less than the degree of the denominator, we divide the 

expression, which yield 

4𝑥2 − 3𝑥 + 2

4𝑥2 − 4𝑥 + 3
= 1 +

𝑥 − 1

4𝑥2 − 4𝑥 + 3
 

Note that the quadratic 4𝑥2 − 4𝑥 + 3 is irreducible because its discriminant  𝑏2 − 4𝑎𝑐 = −32 < 0. 

Hence, we complete the square 

4𝑥2 − 4𝑥 + 3 = (2𝑥 − 1)2 + 2 

Let  

𝑢 = 2𝑥 − 1, 𝑑𝑢 = 2𝑑𝑥, 𝑥 =
1

2
(𝑢 + 1) 

Hence,  

∫
4𝑥2 − 3𝑥 + 2

4𝑥2 − 4𝑥 + 3
𝑑𝑥 = ∫(1 +

𝑥 − 1

4𝑥2 − 4𝑥 + 3
)  𝑑𝑥 

                                   = 𝑥 +
1

2
∫

1
2
(𝑢 + 1) − 1

𝑢2 + 2
 𝑑𝑢 

                     = 𝑥 +
1

4
∫
𝑢 − 1

𝑢2 + 2
 𝑑𝑢 

                                                     = 𝑥 +
1

4
∫

𝑢

𝑢2 + 2
 𝑑𝑢 −

1

4
∫

1

𝑢2 + 2
 𝑑𝑢 

                                                              = 𝑥 +
1

8
ln(𝑢2 + 2) −

1

4
.
1

√2
tan−1 (

𝑢

√2
) + 𝐶 
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                                                                                = 𝑥 +
1

8
ln(4𝑥2 − 4𝑥 + 3) −

1

4√2
tan−1 (

2𝑥 − 1

√2
) + 𝐶 

 

Try this,  

Please integrate ∫
3𝑥 + 1

𝑥2 (𝑥2 + 25 )
 𝑑𝑥 

Answer:  

 

8.2.3.4 CASE 4: Q(X) CONTAINS A REPEATED IRREDUCIBLE QUADRATIC FACTOR  

If 𝑄(𝑥) has the factor (𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑟,  where   𝑏2 − 4𝑎𝑐 < 0, then  

𝐴1𝑥 + 𝐵1
𝑎𝑥2 + 𝑏𝑥 + 𝑐

+
𝐴2𝑥 + 𝐵2

(𝑎𝑥2 + 𝑏𝑥 + 𝑐)2
+⋯

𝐴𝑟𝑥 + 𝐵𝑟
(𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑟

… . . (8) 

occurs in the partial fraction decomposition of 𝑅(𝑥)/𝑄(𝑥). Each of the terms in Eq (8) can be 

integrated using a substitution or by first completing the square if necessary.  

 

Example 8.11 

Evaluate 

∫
1 − 𝑥 + 2𝑥2 − 𝑥3

𝑥(𝑥2 + 1)2
 𝑑𝑥 

 

Solution 

The form of the partial fraction decomposition is 

1 − 𝑥 + 2𝑥2 − 𝑥3

𝑥(𝑥2 + 1)2
=
𝐴

𝑥
+
𝐵𝑥 + 𝐶

𝑥2 + 1
+

𝐷𝑥 + 𝐸

(𝑥2 + 1)2
 

Then 

−𝑥3 + 2𝑥2 − 𝑥 + 1 = 𝐴(𝑥2 + 1)2 + (𝐵𝑥 + 𝐶)𝑥(𝑥2 + 1) + (𝐷𝑥 + 𝐸)𝑥 

                                                 = (𝐴 + 𝐵)𝑥4 + 𝐶𝑥3 + (2𝐴 + 𝐵 + 𝐷)𝑥2 + (𝐶 + 𝐸)𝑥 + 𝐴 

Equating coefficients, we obtain 𝐴 = 1, 𝐵 = −1, 𝐶 = −1,𝐷 = 1,𝐸 = 0. 
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∫
1 − 𝑥 + 2𝑥2 − 𝑥3

𝑥(𝑥2 + 1)2
 𝑑𝑥 = ∫(

1

𝑥
−
𝑥 + 1

𝑥2 + 1
+

𝑥

(𝑥2 + 1)2
)  𝑑𝑥 

                                                                          = ∫
𝑑𝑥

𝑥
− ∫

𝑥

𝑥2 + 1
𝑑𝑥 − ∫

𝑑𝑥

𝑥2 + 1
+∫

𝑥 𝑑𝑥

(𝑥2 + 1)2
 

                                                                         = ln|𝑥| −
1

2
ln(𝑥2 + 1) − tan−1𝑥 −

1

2(𝑥2 + 1)
+ 𝐾 

8.3 IMPROPER INTEGRALS 

In this sub section, extend the concept of a definite integral to the case where the interval is infinite 

and also to the case where f has an infinite discontinuity in [a, b]. In either case the integral is called 

an improper integral 

 

8.3.1 TYPE 1: INFINITE INTERVALS 

Consider the infinite region 𝒮 that lies under the curve 𝑦 = 1/𝑥2, above the x-axis, and to the right 

of line 𝑥 = 1. This is shown in Figure 8.4.  

 

 

 

 

 

 

 

You might think that since 𝒮 is infinite in extent, its area must be infinite, but let’s take a closer look. 

From Figure 8.4, we can see that the area of the part of 𝒮 that lies to the left of the line 𝑥 = 𝑡 

(shaded area) is   

𝐴(𝑡) = ∫
1

𝑥2
 𝑑𝑥 =  −

𝑡

1

1

𝑥
]
1

𝑡

 

                                = 1 −
1

𝑡
 

Notice that 𝐴(𝑡) < 1 no matter how large 𝑡 is chosen. We also observe that  

lim
𝑡→∞

𝐴(𝑡) = lim
𝑡→∞

(1 −
1

𝑡
) = 1 

This is shown in Figure 8.5. 

Figure 8.4: 𝑦 = 1/𝑥2 
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Using this example as a guide, we define the integral of f over an infinite interval as the limit of 

integrals over finite intervals. Figure 8.6 shows the definition of an improper integral of Type 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 8.12 

Determine whether the integral ∫ (
1

𝑥
)𝑑𝑥

∞

1
 is convergent or divergent 

Solution 

∫ (
1

𝑥
)𝑑𝑥

∞

1

= lim
𝑡→∞

ln|𝑥|]1
𝑡 = lim

𝑡→∞
(ln 𝑡 − ln 1) 

                                          = lim
𝑡→∞

ln 𝑡 =  ∞ 

The limit does not exist as a finite number and so the improper integral is divergent. 

 

Figure 8.5: Area under the curve as 𝑡 → ∞ 

Figure 8.6: Definition of an improper integral of Type 1 
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8.3.2 TYPE 2: DISCONTINUOUS INTEGRANDS 

Suppose that 𝑓 is a positive continuous function defined on a finite interval [a, b) but has a vertical 

asymptote at b. Let S be the unbounded region under the graph of f and above the x-axis between a 

and b. (For Type 1 integrals, the regions extended indefinitely in a horizontal direction. Here the 

region is infinite in a vertical direction.)  

 

The area of the part of S between a and t (the shaded region in Figure 8.7) is 

𝐴(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥
𝑡

𝑎

 

 

 

 

 

 

 

 

If it happen that 𝐴(𝑡) approaches a definite number 𝐴 as 𝑡 → 𝑏−, then we say that the area of the 

region S is 𝐴 and we could write 

∫ 𝑓(𝑥)𝑑𝑥 =  lim
𝑡→𝑏−

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

 

We use this equation to define an improper integral of Type 2 even when 𝑓 is not a positive function, 

no matter what type of discontinuity 𝑓 has at b. Figure 8.8 below presents the definition of an 

improper Integral of Type 2. 

 

 

 

 

 

 

 

 

Figure 8.7: Area of the part of S 



20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 8.13 

Find 

∫
1

√𝑥 − 2
 𝑑𝑥

5

2

 

 

Solution 

The given integral is improper because 𝑓(𝑥) =
1

√𝑥−2
 has the vertical asymptote at 𝑥 = 2. Since the 

infinite discontinuity occurs at the left endpoint of [2, 5], we use part (b) of the definition in Figure 

8.8. 

∫
1

√𝑥 − 2
 𝑑𝑥 = lim

𝑡→2+
∫

𝑑𝑥

√𝑥 − 2

5

𝑡

5

2

 

= lim
𝑡→2+

2√𝑥 − 2]
𝑡

5
= lim

𝑡→2+
(√3 − √𝑡 − 2) 

                   = 2√3 

Thus the given improper integral is convergent and, since the integrand is positive, we can interpret 

the value of the integral as the area of the shaded region in Figure 8.9. 

 

Figure 8.8: Definition of an improper integral of Type 2 
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8.3.3 A COMPARISON TEST FOR IMPROPER INTEGRALS  

Sometimes it is impossible to find the exact value of an improper integral and yet it is important to 

know whether it is convergent or divergent.  

In such cases the following theorem is useful. Although we state it for Type 1 integrals, a similar 

theorem is true for Type 2 integrals. 

 

 

 

We omit the proof of the Comparison Theorem, but Figure 8.10 makes it seem plausible. 

 

 

 

 

 

 

 

 

If the area under the top curve y = f (x) is finite, then so is the area under the bottom curve y = g (x).  

If the area under y = g (x) is infinite, then so is the area under y = f (x). [Note that the reverse is not 

necessarily true: If ∫ 𝑔(𝑥)𝑑𝑥
∞

𝑎
 is convergent, ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑎
 may or may not be convergent, and if  

∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 is divergent, ∫ 𝑔(𝑥)𝑑𝑥

∞

𝑎
 may or may not be divergent.] 

 

 

Figure 8.9: 𝑦 =
1

√𝑥−2
 

Figure 8.10: Area under the curve 




