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ENGINEERING APPLICATION OF INTEGRALS 
 

 

 

In this section we will determine the area of a region between two curves by integrating with respect 

to the independent variable. The area of a region between two curves will also be determined using 

definite integration with respect to the dependent variable. We also try to find the area of a 

compound region. 

 Let  f(x)  and  g(x)  be continuous functions over an interval  [a,b]  such that  f(x)≥g(x)  on  [a,b] . 

We want to find the area between the graphs of the functions, as shown in Figure  9.1. 

 

 

Figure  9.1: The area between the graphs of two functions,  f(x)  and  g(x) , on the interval  [a,b] 

 

 As we did before, we are going to partition the interval on the x-axis and approximate the area 

between the graphs of the functions with rectangles. So, for  i=0,1,2,…,n , let  P=xi  be a regular 

partition of  [a,b] . Then, for  i=1,2,…,n,  choose a point  x∗i∈[xi−1,xi] , and on each interval  [xi−1,xi]  

construct a rectangle that extends vertically from  g(x∗i)  to  f(x∗i) . Figure 9.2(a) shows the rectangles 

when x∗i is selected to be the left endpoint of the interval and n=10 . Figure 9.2(b) shows a 

representative rectangle in detail. 

 

 

Figure  9.2 : (a)We can approximate the area between the graphs of two functions,  f(x)  and  g(x) , 

with rectangles. (b) The area of a typical rectangle goes from one curve to the other. 

WEEK 9: ENGINEERING APPLICATION OF INTEGRALS  

9.1 (I) AREA BETWEEN CURVES  
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The height of each individual rectangle is  f(x∗i)−g(x∗i)  and the width of each rectangle is  Δx . 

Adding the areas of all the rectangles, we see that the area between the curves is approximated by: 

𝐴 ≈  ∑[𝑓(𝑥𝑖
∗)

𝑛

𝑖=1

− 𝑔(𝑥𝑖
∗)]∆𝑥                                 (9.1) 

 

This is a Riemann sum, so we take the limit as  n→∞  and we get, 

 

𝐴 = lim
𝑛→∝

∑[𝑓(𝑥𝑖
∗)

𝑛

𝑖=1

− 𝑔(𝑥𝑖
∗)]∆𝑥   =  ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥

𝑏

𝑎

                              (9.2) 

 

In conclusion, let  f(x)  and  g(x)  be continuous functions such that  f(x)≥g(x)  over an interval [ a,b] . 

Let “R” denote the region bounded above by the graph of  f(x) , below by the graph of  g(x) , and on 

the left and right by the lines  x=a  and  x=b , respectively. Then, the area of  “R”  is given by,  

 

𝐴 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎

                            (9.3)                             

 

EXAMPLE 9.1  

Find the area bounded by two curves, f(x) = −x2 + 4x + 3 and g(x) = −x3 +7x2 −10x+5 over the interval 1 

≤ x ≤ 2.  

 

Solution: 

The region can be depicted as shown in Figure 9.3(a) with the desired area shaded. Also, we can 

depict f alone with the area under f shaded, and then g alone with the area under g shaded. 

 

 

Figure 9.3: Area between curves as a difference of areas 
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It is clear from the figure that the area we want is the area under f minus the area under g, which 

can be written as,  

 

𝐴 = ∫ 𝑓(𝑥)𝑑𝑥
2

1
−  ∫ 𝑔(𝑥)𝑑𝑥

2

1
 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥

2

1
   

= ∫ [(−𝑥2 − 𝑥 − 3) − (−𝑥3 + 7𝑥2 − 10𝑥 + 5)]𝑑𝑥
2

1
 

= 
𝑥4

4
−
8𝑥3

3
+ 7𝑥2 − 2𝑥|

1

2

 

=
49

12
 

 

EXAMPLE 9.2  

If R is the region bounded above by the graph of the function f(x) = 9−(x/2)2 and below by the graph 

of the function g(x)=6−x, find the area of region R. 

 

Solution: 

The region can be depicted by the following figure. 

 

 

Figure  9.4 : This graph shows the region below the graph of  f(x)  and above the graph of  g(x). 

 

We first need to compute where the graphs of the functions intersect. Setting  f(x)=g(x),  we get, 

 

𝑓(𝑥) = 𝑔(𝑥) 

9 − (
𝑥

2
)2 = 6 − 𝑥 

36 − 𝑥2 = 24 − 𝑥 

(𝑥 − 6)(𝑥 + 2) = 0 

𝑥 = (6,−2) 

The graphs of the functions intersect when  x=6  or  x=−2,  so we want to integrate from  −2  to  6 . 

Since  f(x)≥g(x)  for  −2≤x≤6,  we obtain, 
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So far, we have required,  f(x) ≥ g(x)  over the entire interval of interest, but what if we want to look 

at regions bounded by the graphs of functions that cross one another? In that case, we modify the 

process we just developed by using the absolute value function. 

 

EXAMPLE  9.3   

Finding the Area of a Region Bounded by Functions That Cross 

 If  R  is the region between the graphs of the functions  f(x) =sinx  and  g(x) = cosx  over the interval  

[0,π] , find the area of region  R . 

The region can be depicted by the following figure. 

 

 

Figure  9.5 : The region between two curves can be broken into two sub-regions. 

 

The graphs of the functions intersect at x=π/4. For x∈[0,π/4], cosx≥sinx, thus, 

|𝑓(𝑥) − 𝑔(𝑥)| =  |𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥| = 𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥 

 

On the other hand, for  x∈[π/4,π], sinx≥cosx,  thus, 

9.1 (II) AREAS OF COMPOUND REGIONS  
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|𝑓(𝑥) − 𝑔(𝑥)| =  |𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥| = 𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥 

Now,  

𝐴= ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
   

= ∫ [𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥]𝑑𝑥
𝜋

0
   

= ∫ [𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥]𝑑𝑥 + ∫ [𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥]𝑑𝑥
𝜋

𝜋/4

𝜋/4

0
 

= (√2 − 1) + (1 + √2) 

= 2√2 

 

EXAMPLE 9.4 

Consider the region depicted in Figure  9.6 . Find the area of  R . 

 

 

Figure  9.6 : Two integrals are required to calculate the area of this region. 

 

As with Example 9.3, we need to divide the interval into two pieces. The graphs of the functions 

intersect at  x=1  (set  f(x)=g(x)  and solve for x), so we evaluate two separate integrals: one over the 

interval  [0,1]  and one over the interval  [1,2] . 

 

Over the interval [0,1] , the region is bounded above by  f(x)=x2  and below by the x-axis, so we have, 

𝐴1 = ∫ 𝑥2𝑑𝑥 =  
𝑥3

3

1

0

=
1

3
 

Over the interval  [1,2],  the region is bounded above by  g(x)=2−x  and below by the x-axis, so we 

have, 

𝐴2 = ∫ (2 − 𝑥)𝑑𝑥 =  
1

2

2

1
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Adding these areas together, we obtain, A = A1+A2 = 5/6 

The area of the region is,  5/6  units2. 

 

 

In this section, we will learn about the force exerted by a fluid on a horizontal surface. Also, we will 

determine the hydrostatic force against a vertical surface.  

 

 

Deep-sea divers know that pressure increases as they swim deeper because their bodies have to 

support larger volumes of water. If a planar plate with an area of A square meters is submerged 

horizontally in a fluid at a depth of d meters, as in Figure 9.7, then the volume of the fluid above the 

plate is V = Ad. Moreover, the mass m of the fluid above the plate is m = V ω where ω is the mass 

density of the fluid in kilograms per cubic meter. Applying Newton’s Second Law of Motion, the force 

exerted by the fluid on the plate is: 

 

Force = mg = Adωg 

 

 

Figure 9.7: A plate of area A is submerged horizontally in a fluid of depth d. 

 

Where, g is the acceleration due to gravity. The product ω = ωg is called the weight density of the 

fluid, and is the weight per unit volume of the fluid. Then the force exerted by the fluid on the plate 

at a depth d meters is given by: 

 

Force = (Area) · (Depth) · (Weight Density) = Adω’ 

 

Consequently, the pressure or force per unit area weighing on the horizontal plate is defined as: 

 

Pressure =  
Force

Area
= dω′ 

9.2 HYDROSTATIC FORCE  

9.2 (I) FORCE EXERTED BY A FLUID ON A HORIZONTAL SURFACE 
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The above equation implies that the pressure is directly proportional to the depth. This is why a 

deep-sea diver experiences more pressure as he or she swims deeper. 

 

 

 

Early in the section, we described the force exerted by a fluid on a horizontal surface without using 

calculus, see Definition 8. However, in order to find the force exerted by a fluid on a vertical surface 

we have to apply calculus. In addition, we apply a physical principle due to Blaise Pascal, i.e., at a 

fixed depth a fluid exerts the same pressure in all directions. 

 We draw a y-axis so that the depths of a vertical surface vary from points y = c to y = d on the y-

axis. Then partition [c, d] into n subintervals of equal width Δy. If Δy is small, the portion of the 

vertical plate associated to the ith subinterval [yi−1, yi] is approximately a vertical rectangular strip Ri 

of length L(yi) and width Δy. Moreover, the depth of Ri from the surface of the fluid is almost 

constant and which we denote by d(yi). Applying the above principle due to Pascal, the force Fi 

exerted by the fluid on a vertical rectangle Ri is approximately: 

 

𝐹𝑖 ≈ 𝐴𝑟𝑒𝑎. 𝐷𝑒𝑝𝑡ℎ.𝑊𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  

 

≈ [𝐿(𝑦𝑖)∆𝑦]𝑑𝑦𝑖𝜔′ 

 

We find it reasonable to believe that the sum of the Fi’s approximates the force F exerted by the 

fluid on the entire vertical surface, i.e., 

𝐹 ≈  ∑𝐹𝑖

𝑛

𝑖=1

= ∑[𝐿(𝑦𝑖)∆𝑦]𝑑𝑦𝑖𝜔′

𝑛

𝑖=1

 

 

Suppose a y-axis is positioned vertically so that the depths of the fluid vary from points y = c to y = d 

on the y-axis. At point y in [c, d], let d(y) and L(y) be the depth and length from side to side of the 

surface, respectively. The force exerted by the fluid on one side of the vertical surface is given by: 

 

𝐹 = ∫ 𝐿(𝑦). 𝑑(𝑦). 𝑑𝑦
𝑑

𝑐
                 (9.4) 

 

provided d(y) and L(y) are continuous functions of y. 

 

EXAMPLE 9.5  

A vertical dam has a cross section that is a trapezoid, see Figure 9.8. The dimensions of the trapezoid 

are 10 meters high, 100 meters across the top, and the base is 60 meters. If the dam is filled with 

water, find the force exerted by the water on the cross section. 

9.2 (II) HYDROSTATIC FORCE AGAINST A VERTICAL SURFACE 

 



29 
 

 

Solution: 

 

Figure 9.8: The cross section of a vertical dam. 

 

Since water has a mass density of 1000 kg/m3 and gravity is 9.8 m/sec2, the weight density of water 

is: 

𝜔′ = 1000. 9.8 = 9800 
𝑘𝑔

𝑚2𝑠𝑒𝑐2
 

 

 

Figure 9.9: The cross section of a vertical dam 

 

Let consider (x, y) is the center of the base of the dam. An equation of the slanted side of the dam in 

the first quadrant is: 

 

𝑦 =  
𝑥

2
− 15 

𝑥 = 2𝑦 + 30 

At point y in [0, 10], the horizontal distance across the dam is: 

𝐿(𝑦) = 2𝑥 = 4𝑦 + 60 

and the water depth is:    𝑑(𝑦) = 10 − 𝑦  
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Now, 𝐹𝑜𝑟𝑐𝑒 =  𝜔′ ∫ 𝐿(𝑦)𝑑(𝑦)𝑑𝑦 = 9800∫ (4𝑦 + 60)(10 − 𝑦)𝑑𝑦
10

0

𝑑

𝑐
 

                          = 3.593  × 107  
𝑘𝑔.𝑚

𝑠𝑒𝑐2
 

 

EXAMPLE 9.6  

A dam has the shape of the trapezoid shown in Figure 9.10. The height is 20 m and the width is 50 m 

at the top and 30 m at the bottom. Find the force on the dam due to hydrostatic pressure if the 

water level is 4 m from the top of the dam. 

 

 

Figure 9.10: A dam with shape of trapezoid 

 

Solution: 

• Choose a vertical x-axis with origin at the surface of the water and directed downward 

• Divide the depth of water into intervals between [0,16] of equal length 

• At the ith strip (𝑥 = 𝑥𝑖
∗),  

 
𝑎

16 − 𝑥𝑖
∗ =

10

20
 

From which, 

𝑎 =  
16 − 𝑥𝑖

∗

2
= 8 −

𝑥𝑖
∗

2
 

 

Width of the dam at the ith strip, 𝑤𝑖 can be found by, 

 

𝑤𝑖 = 2(15 + 𝑎) = 2(15 + 8 −
𝑥𝑖
∗

2
) = 46 − 𝑥𝑖

∗ 

• At the ith strip, the area 𝐴𝑖  can be approximated by, 

 

𝐴𝑖 ≈ 𝑤𝑖∆𝑥 = (46 − 𝑥𝑖
∗)∆𝑥 

• When ∆𝑥 is small, the pressure acting on the ith strip, 𝑃𝑖 is almost constant: 

 

𝑃𝑖 ≈ 1000𝑔𝑥𝑖
∗ 
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• The hydrostatic force on the ith strip, 𝐹𝑖, 

 

𝐹𝑖 = 𝑃𝑖𝐴𝑖 ≈ 1000𝑔𝑥𝑖
∗(46 − 𝑥𝑖

∗)∆𝑥 

• Adding these forces and taking the limit as n →  ∞, 

𝐹 = lim
𝑛→∞

∑1000𝑔𝑥𝑖
∗(46 − 𝑥𝑖

∗)∆𝑥

𝑛

𝑖=1

 

= ∫ 1000𝑔𝑥(46 − 𝑥)𝑑𝑥
16

0

 

= 1000(9.8)∫ (46𝑥 − 𝑥2)𝑑𝑥
16

0

 

= 9000 [23𝑥2 −
𝑥3

3
]|
0

16

 

≈ 4.43 𝑥 107 𝑁 

 

EXAMPLE 9.7  

A circular plate with a radius of 1 ft is submerged vertically in a tank filled with water. The center of 

the plate is 4 ft from the surface of the water. Find the force exerted by the water on one side of the 

plate. 

 

 

Figure 9.11:  A plate with a circular cross section is submerged vertically. 

 

Solution: 

Draw a coordinate system where origin is at the center of the circle, see Figure 9.11. Then an 

equation of the circular plate of radius 1 is: 

𝑥2 + 𝑦2 = 1 

 

Partition the interval [−1, 1] into smaller subintervals of equal width Δy. The portion of the circle in 

the ith subinterval [yi−1, yi] can be approximated by a rectangle Ri of length: 
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𝐿(𝑦𝑖) = 2√(1 − 𝑦𝑖)
2 

The distance of any point in Ri from the surface of the water is approximately: 

 

𝑑(𝑦𝑖) = 4 − 𝑦𝑖 

 

Now, 𝐹𝑜𝑟𝑐𝑒 =  𝜔′ ∫ 𝐿(𝑦)𝑑(𝑦)𝑑𝑦 = 62.4∫ (4 − 𝑦). 2√(1 − 𝑦𝑖)
2𝑑𝑦

1

−1

𝑑

𝑐
 

 

= 124.8∫ [4√(1 − 𝑦𝑖)
2 − 𝑦 √(1 − 𝑦𝑖)

2
1

−1

]𝑑𝑦 

= 124.8∫ 4√(1 − 𝑦𝑖)
2𝑑𝑦 − 128.4∫ 𝑦 √(1 − 𝑦𝑖)

2
1

−1

1

−1

𝑑𝑦 

 

In the above equation, the first integral is the area of a semicircle of radius 1 which is π/2, and 

second integral is zero since we are integrating an odd function over [−1, 1]. Then the force is: 

 

𝐹𝑜𝑟𝑐𝑒 = 124.8 .4.
𝜋

2
=   249.6𝜋 ≈  784 𝑙𝑏. 

 

 

 

First recall a general principle that will later be applied to distance-velocity-acceleration problems, 

among other things. If F(u) is an anti-derivative of f(u), then: 

 

∫ 𝑓(𝑢)𝑑𝑢 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎

 

Suppose that we want to let the upper limit of integration vary, i.e., we replace b by some variable x. 

We think of a as a fixed starting value x0. In this new notation the last equation (after adding F(a) to 

both sides) becomes: 

𝐹(𝑥) = 𝐹(𝑥0) + ∫ 𝑓(𝑢)𝑑𝑢
𝑥

𝑥𝑜

 

 

(Here u is the variable of integration, called a “dummy variable,” since it is not the variable in the 

function F(x). In general, it is not a good idea to use the same letter as a variable of integration and 

as a limit of integration. That is,  ∫ 𝑓(𝑥)𝑑𝑥
𝑥

𝑥𝑜
 is bad notation, and can lead to errors and confusion.) 

 

An important application of this principle occurs when we are interested in the position of an object 

at time t (say, on the x-axis) and we know its position at time t0. Let s(t) denote the position of the 

9.3 DISTANCE, VELOCITY, ACCELERATION 
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object at time t (its distance from a reference point, such as the origin on the x-axis). Then the net 

change in position between t0 and t is s(t)−s(t0). 

Since s(t) is an anti-derivative of the velocity function v(t), we can write: 

 

𝑠(𝑡) = 𝑠(𝑡0) + ∫ 𝑣(𝑢)𝑑𝑢
𝑡

𝑡0

 

Similarly, since the velocity is an anti-derivative of the acceleration function a(t), we have: 

𝑣(𝑡) = 𝑣(𝑡0) + ∫ 𝑎(𝑢)𝑑𝑢
𝑡

𝑡0

 

 

 

EXAMPLE 9.8  

Suppose an object is acted upon by a constant force F. Find v(t) and s(t).  

 

Solution: 

By Newton’s law F = ma, so the acceleration is F/m, where m is the mass of the object. Then we first 

have: 

 

𝑣(𝑡) = 𝑣(𝑡0) + ∫
𝐹

𝑚
𝑑𝑢

𝑡

𝑡0

 

𝑣(𝑡) = 𝑣𝑜 + 
𝐹

𝑚
𝑢|𝑡0
𝑡  

𝑣(𝑡) = 𝑣0 + 
𝐹

𝑚
 (𝑡 − 𝑡0) 

 

Using the usual convention v0 = v(t0). Then: 

𝑠(𝑡) = 𝑠(𝑡0) + ∫ [𝑣0 + 
𝐹

𝑚
 (𝑢 − 𝑡0)]𝑑𝑢

𝑡

𝑡0

 

𝒔(𝒕) = 𝒔𝟎 +  𝒗𝟎(𝒕 − 𝒕𝟎) + 
𝑭

𝟐𝒎
 (𝒕 − 𝒕𝟎)𝟐  

In the common case that t0 = 0, then: 

𝒔(𝒕) = 𝒔𝟎 +  𝒗𝟎𝒕 + 
𝑭

𝟐𝒎
 𝒕𝟐 

 

EXAMPLE 9.9  

The acceleration of an object is given by a(t) = cos(πt), and its velocity at time t = 0 is 1/(2π). Find 

both the net and the total distance travelled in the first 1.5 seconds. 
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Solution: 

We compute: 

𝑣(𝑡) = 𝑣0 + ∫ cos(𝜋𝑢) 𝑑𝑢
𝑡

0

 

= 
1

2𝜋
+ 
1

𝜋
sin (𝜋𝑢)|0

𝑡  

= 
1

2𝜋
+ 
1

𝜋
𝑠𝑖𝑛𝜋𝑡 =  

1

𝜋
(
1

2
+  𝑠𝑖𝑛𝜋𝑡) 

The net distance travelled is then: 

𝑠(3/2) − 𝑠(𝑡0) = ∫ (
1

2𝜋
+ 
1

𝜋
𝑠𝑖𝑛𝜋𝑡)𝑑𝑡

3/2

0

 

= [
𝑡

2𝜋
− cos (𝜋𝑡)]|0

3/2
 

= 
3

4𝜋
+
1

𝜋2
 

≈ 0.340 𝑚𝑒𝑡𝑒𝑟𝑠 

 

To find the total distance travelled, we need to know when [0.5 + sin(πt)] is positive and when it is 

negative. This function is 0 when sin(πt) is −0.5, i.e., when πt = 7π/6, 11π/6, etc. The value πt = 

7π/6, i.e., t = 7/6, is the only value in the range 0 ≤ t ≤ 1.5. Since v(t) > 0 for t < 7/6 and v(t) < 0 

for t > 7/6, the total distance travelled is: 

 

𝑠(𝑡𝑜𝑡𝑎𝑙) = ∫ (
1

2𝜋
+ 
1

𝜋
𝑠𝑖𝑛𝜋𝑡)𝑑𝑡 + |∫ (

1

2𝜋
+ 
1

𝜋
𝑠𝑖𝑛𝜋𝑡)𝑑𝑡

3/2

7/6

|
7/6

0

 

≈ 0.409 𝑚𝑒𝑡𝑒𝑟𝑠 

 

 

 

In everyday life, work is a physical or mental activity that results in the completion of a certain task. 

The technical meaning of work in physics involves the concept of force acting on an object and the 

displacement of the object due to the force. Intuitively, force describes how an object is pushed or 

pulled.  

For example, if a 150 kg person seats on top of a vertical spring, we say a force of 150 kg is acting on 

the top of a spring and the direction of the force is downward. Further, if the 150 kg force 

compresses the spring by 2 m, we say that the work done is the product of the force and the amount 

by which the spring is compressed. That is, if an object is moved in a straight line against a force F for 

a distance s the work done is W = Fs. In above case, W = 150 x 2 = 300 Kg-m. 

9.4 WORK  
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Other examples of work include a student lifting her book sack, a gardener pushing a lawn mower, 

and a space shuttle lifting off for space. In reality few situations are very simple. However, the force 

might not be constant over the range of motion, and then we need to take help from integral. 

 

EXAMPLE 9.10  

How much work is done in lifting a 10 pound weight from the surface of the earth to an orbit 100 

miles above the surface?  

 

Solution: 

Over 100 miles the force due to gravity does change significantly, so we need to take this into 

account. The force exerted on a 10 pound weight at a distance r from the center of the earth is F = 

k/r2 and by definition it is 10 when r is the radius of the earth (we assume the earth is a sphere). 

How can we approximate the work done? We divide the path from the surface to orbit into n small 

subpaths. On each subpath the force due to gravity is roughly constant, with value k/r2
i at distance ri. 

The work to raise the object from ri to ri+1 is thus approximately k/r2 iΔr and the total work is 

approximately: 

 

∑
𝑘

𝑟𝑖
2 ∆𝑟

𝑛−1

𝑖=0

 

or in the limit,                                              𝑊 = ∫
𝑘

𝑟2
𝑑𝑟

𝑟1

𝑟𝑜
 

where r0 is the radius of the earth and r1 is r0 plus 100 miles. The work is, 

𝑊 = ∫
𝑘

𝑟2
𝑑𝑟

𝑟1

𝑟𝑜

= −
𝑘

𝑟
|
𝑟0

𝑟1

= − 
𝑘

𝑟
+
𝑘

𝑟0
 

 

Using r0 = 20925525 feet we have r1 = 21453525. The force on the 10 pound weight at the surface 

of the earth is 10 pounds, so 10 = k/209255252, giving k = 4378775965256250. 

Then,  

− 
𝑘

𝑟
+
𝑘

𝑟0
=  
491052320000

95349
 ≈  5150052 𝑓𝑡 − 𝑝𝑜𝑢𝑛𝑑𝑠 

 

Note that if we assume the force due to gravity is 10 pounds over the whole distance we would 

calculate the work as 10.(r1−r0) = 10 · 100 · 5280 = 5280000, somewhat higher since we don’t 

account for the weakening of the gravitational force. 

 

EXAMPLE 9.11 (HOOKE’S LAW)   

A force of 200 lb compresses a spring by a length of 0.5 ft from its natural length of 4 ft. 

a) Find the spring constant. 
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b) Find the work needed to compress the spring from a length of 3.5 ft to a length of 3 ft. 

 

Solution: 

(a) Hooke’s Law states the force satisfies 

f(x) = kx 

where k is a positive constant called the spring constant and x is not too big to cause the spring to 

break. 

Now, we find that the spring constant k is, 

k(0.5 ft) = 200 lb 

k = 400 lb/ft. 

 

(b) By Hooke’s Law, the force needed to compress the spring by a length of x feet from its natural 

length is 

 

f(x) = kx = 400x 

 

Since, k = 400. As the spring compresses from a length of 3.5 ft to a length of 3 ft, we can think of 

one end of the spring as moving along the x-axis from x = 0.5 to x = 1 while the other end of 

the spring is held fixed. Then the work done is, 

 

𝑊 = ∫ 400𝑥𝑑𝑥 =  
400𝑥2

2
|
0.5

1

= 150 𝑓𝑡 − 𝑙𝑏
1

0.5

 

 

EXAMPLE 9.12 (WINDING A CABLE)  

A 20 ft cable weighing 3 lb/ft is hanging from a winch. Find the work done by the winch in winding 

up all the cable. 

 

Solution: 

First we consider that the cable as an inverted vertical number line with the winch at the origin and 

the lower end of the cable at y = 20, see Figure 1. Subdivide the 

chain into smaller sections by partitioning [0, 20] into 

subintervals [yi−1, yi] of equal width Δy.  

Since the cable weighs 3 lb/ft, the weight of the section of the chain in 

[yi−1, yi] is 3Δy lb. If Δy is small, yi is approximately yi−1, and 

consequently the distance between the origin and the section 

[yi−1, yi] is approximately yi. Then the work Wi needed to lift the 

section of the chain in [yi−1, yi] to the winch is approximately. 
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Wi = (force) (distance) ≈ (3Δy lb) (yi ft) = 3yiΔy ft-lb. 

 

As the norm ‖∆‖ of the partition of [0, 20] approaches zero, we find that the total work needed to 

lift the entire chain is given by,  

𝑊 = lim
∆𝑦→0

∑3𝑦𝑖

𝑛

𝑖=1

 ∆𝑦 = ∫ 3𝑦𝑑𝑦 = 600 𝑓𝑡 − 𝑙𝑏
20

0

 

 

EXAMPLE 9.13 (WORK DONE IN PUMPING WATER)  

An inverted circular cone with a height 6 ft and base radius 2 ft is filled with water to a depth of 4 ft, 

see Figure 9.13. Find the work needed to pump all the water to the top of the conical tank. The 

density of water is 62.4 lb/ft3. 

 

Figure 9.13: A conical water tank of height 6ft, base diameter 4ft, filled with water to a depth of 4ft. 

 

Imagine inserting a vertical number line through the vertex of the cone with the origin at the top of 

the conical tank. Since the water is 4 ft deep, the water marks on the number line will lie on the 

interval [2, 6]. Subdivide [2, 6] into n subintervals [yi−1, yi] of equal 

width Δy. The volume of water in the depth [yi−1, yi] can be 

approximated by a circular disk Di of height Δy and radius ri. In 

Figure 9.14, we see similar triangles and consequently. 

 

𝑟𝑖
6 − 𝑦𝑖

= 
2

6
 

𝑟𝑖 = 
2

6
 (6 − 𝑦𝑖) 

Then the volume Vi of disk Di is, 

𝑉𝑖 = 𝜋𝑟
2∆𝑦 =

𝜇

9
(6 − 𝑦𝑖)

2∆𝑦 

and using the density of water we find that the weight Fi of disk Di is, 
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𝐹𝑖 = 62.4𝑉𝑖 = 
62.4𝜋

9
 (6 − 𝑦𝑖)

2∆𝑦 

Then the work Wi needed to pump disk Di to the top of the tank is approximately, 

𝑊𝑖  ≈ (𝑓𝑜𝑟𝑐𝑒)(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) =  𝐹𝑖𝑦𝑖 = 
62.4𝜋

9
 𝑦𝑖(6 − 𝑦𝑖)

2∆𝑦 

Applying the limit process, we find that the total work needed to pump the water to the top of the 

conical tank is, 

 

 

 

 

Suppose a beam is l meters long, and that there are two weights on the beam: a m1 kilogram weight 

d1 meters from the fulcrum, another m2 kilogram weight d2 meters from the fulcrum end as in 

figure 9.8. Where a fulcrum should be placed so that the beam balances? Let’s assign a scale to the 

beam, from 0 at the left end to 10 at the right, so that we can denote locations on the beam simply 

as x coordinates; the weights are at x = 3, x = 6, and x = 8, as in figure 9.15. 

 

Figure 9.15: A beam with two masses. 

 

Two masses m1 and m2 are attached to a rod of negligible mass on opposite sides of a fulcrum and at 

distances d1 and d2 from the fulcrum. The rod will balance if 𝑚1 𝑑1=𝑚2 𝑑2. 

 

Considering the following Figure 9.9, we can find out the position fulcrum. 

 

9.5 MOMENTS AND CENTRES OF MASS  
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Figure 9.16 

 

• suppose that the rod lies along the x-axis with m1 at x1 and m2 at x2 and the center of mass at 

𝑥̅ 

• Compare with the previous figure,  

𝑑1 = 𝑥̅ − 𝑥1 and 𝑑2 = 𝑥2 − 𝑥̅ 

 

• Thus, 

𝑚1(𝑥̅ − 𝑥1) = 𝑚2(𝑥2 − 𝑥̅) 

𝑚1𝑥̅ + 𝑚2𝑥̅ = 𝑚1𝑥1 +𝑚2𝑥2 

𝑥̅ =
𝑚1𝑥1 +𝑚2𝑥2
𝑚1 +𝑚2

 

 

• In general, for a system with 𝑛 particles with the mass of each particle 𝑚1,  𝑚2 … ,  𝑚𝑛 located 

at points 𝑥1,  𝑥2 … ,  𝑥𝑛 on the 𝑥-axis,  

•  

𝑥̅ =
∑ 𝑚𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝑚𝑖
𝑛
𝑖=1

 

 

• If we let 𝑚 = ∑ 𝑚𝑖
𝑛
𝑖=1  and the sum of individual moments 𝑀 = ∑ 𝑚𝑖𝑥𝑖

𝑛
𝑖=1 , we obtain 

𝑚𝑥̅ = 𝑀 

 

We can consider another system, like Figure 9.17 below. 

 

 

Figure 9.17 
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• consider a system of 𝑛 particles with masses 𝑚1,  𝑚2 … ,  𝑚𝑛 located at the points 

(𝑥1, 𝑦1), (𝑥2, 𝑦2),  … , (𝑥𝑛, 𝑦𝑛) in the 𝑥𝑦-plane 

• By analogy with the one-dimensional case, we define the moment of the system about the y-

axis to be, 

 

𝑀𝑦 =∑𝑚𝑖𝑥𝑖

𝑛

𝑖=1

 

 

and the moment of the system about the x-axis as, 

𝑀𝑥 =∑𝑚𝑖𝑦𝑖

𝑛

𝑖=1

 

 

• the coordinates (𝑥 ̅, 𝑦̅)  of the center of mass are given in terms of the moments by the 

formulas, 

 

𝑥̅ =
𝑀𝑦

𝑚
 and 𝑦̅ =

𝑀𝑥

𝑚
 

• the center of mass  (𝑥 ̅, 𝑦̅) is the point where a single particle of mass m would have the same 

moments as the system 

 

EXAMPLE 9.14  

Find the moments and centre of mass of the system of objects that have masses 3, 4, and 8 at the 

points (–1, 1), (2, –1), and (3, 2), respectively. 

 

 

Figure 9.18 

 

• Calculate the moments about 𝑥- and 𝑦-axes from the formula 𝑀𝑥 and 𝑀𝑦 

• Calculate the coordinate for the centre of mass (𝑥 ̅, 𝑦̅) from the formula 𝑥̅ =
𝑀𝑦

𝑚
 and 𝑦̅ =

𝑀𝑥

𝑚
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Solution: 

The system of 3 particles with masses 3,  4 𝑎𝑛𝑑 8 located at the points (–1, 1), (2, –1), and (3, 2), 

respectively, in the 𝑥𝑦-plane. 

The moment of the system about the x-axis as, 

 

𝑀𝑥 = ∑ 𝑚𝑖𝑦𝑖
𝑛
𝑖=1  = (3x1+4x-1+8x2) = 15 

The moment of the system about the y-axis to be, 

 

 

𝑀𝑦 = ∑ 𝑚𝑖𝑥𝑖
𝑛
𝑖=1  = (3x-1+ 4x2+8x3) = 29 

 

The center of mass (𝑥 ̅, 𝑦̅) from the formula 𝑥̅ =
𝑀𝑦

𝑚
 and 𝑦̅ =

𝑀𝑥

𝑚
 

 

𝑥̅ =
𝑀𝑦

𝑚
= 

29

(3 + 4 + 8)
= 1.93 

𝑦̅ =
𝑀𝑥
𝑚
= 

15

(3 + 4 + 8)
= 1.0 

The center of mass (𝑥 ̅, 𝑦̅) = (1.93, 1) 

 

EXAMPLE 9.15 (CENTROID OF A LAMINA) 

o What about the center of mass of a flat plate (lamina) that occupies the region ℛ on a plane? 

o The center of mass of the plate is called the centroid of ℛ 

o Use the symmetry principle: if ℛ is symmetric about a line 

l, then the centroid of ℛ lies on l 

o Example: what is the centroid of a rectangle? 

o Next, define moments such that if the entire mass of a 

region is concentrated at the center of mass, its moments 

remain unchanged. 

o Suppose that the region ℛ lies between the lines x = a and x = b, 

above the x-axis, and beneath the graph of f, where f is a 

continuous function 

o divide the interval [a, b] into n subintervals with endpoints x0, 

x1, . . . , xn and equal width x 

o choose the sample point xi* to be the midpoint 𝑥,  ̅̅̅̅  of the i th 

subinterval, that is, 𝑥,  ̅̅̅̅ = (𝑥𝑖−1 + 𝑥𝑖)/2 

o The centroid of the i th approximating rectangle Ri is its center  𝐶𝑖 (𝑥̅𝑖,  
1

2
𝑓(𝑥̅𝑖)) .  Its area is 

𝑓(𝑥̅𝑖)∆𝑥. 

o The mass of the lamina is thus 𝜌𝑓(𝑥̅𝑖)∆𝑥 

• The moment of R
i
 about the y-axis is the product of its mass and the distance from C

i
 to the y-

axis, i.e. 𝑥̅𝑖. Thus,  
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𝑀𝑦(𝑅𝑖) = [𝜌𝑓(𝑥̅𝑖)∆𝑥]𝑥̅𝑖 = 𝜌𝑥̅𝑖𝑓(𝑥̅𝑖)∆𝑥 

• Adding these moments, we obtain the moment of the polygonal approximation to R 

• By taking the limit as n → ∞, we obtain the moment of R about the y-axis, 

 

𝑀𝑦 = lim
𝑛→∞

∑𝜌𝑥̅𝑖𝑓(𝑥̅𝑖)∆𝑥 

𝑛

𝑖=1

= 𝜌∫ 𝑥𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

 

 

• Similarly, we compute the moment of R
i
 about the x-axis as the product of its mass and the 

distance from C
i
 to the x-axis: 

 

𝑀𝑥(𝑅𝑖) = [𝜌𝑓(𝑥̅𝑖)∆𝑥]
1

2
𝑓(𝑥̅𝑖) = 𝜌 ∙

1

2
[𝑓(𝑥̅𝑖)]

2∆𝑥 

• Adding the moments and take the limit to obtain the moment of R about the x-axis: 

 

𝑀𝑥 = lim
𝑛→∞

∑𝜌 ∙
1

2
[𝑓(𝑥̅𝑖)]

2∆𝑥

𝑛

𝑖=1

= 𝜌∫
1

2
[𝑓(𝑥)]2 𝑑𝑥

𝑏

𝑎

 

 

Recall the center of mass for a system of particles: 

 

𝑥̅ =
𝑀𝑦

𝑚
 and 𝑦̅ =

𝑀𝑥

𝑚
 

For a plate, the mass is 

𝑚 = 𝜌𝐴 = 𝜌∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

Thus, 

 

𝑥̅ =
𝑀𝑦

𝑚
=
𝜌∫ 𝑥𝑓(𝑥) 𝑑𝑥

𝑏

𝑎

𝜌 ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

=
∫ 𝑥𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

=
1

𝐴
∫ 𝑥𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

 

 

𝑦̅ =
𝑀𝑥

𝑚
=
𝜌∫

1
2
[𝑓(𝑥)]2 𝑑𝑥

𝑏

𝑎

𝜌 ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

=
∫
1
2
[𝑓(𝑥)]2 𝑑𝑥

𝑏

𝑎

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

=
1

𝐴
∫

1

2
[𝑓(𝑥)]2 𝑑𝑥

𝑏

𝑎

 

 

 

 

 

 
9.6 ARC LENGTH  
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Let consider the following arc, 

 

 

Figure 9.19 

 

We want to determine the length of the continuous function y=f(x) on the interval [a,b]. We’ll also 

need to assume that the derivative is continuous on [a, b]. 

Initially we’ll need to estimate the length of the curve. We’ll do this by dividing the interval up 

into n equal subintervals each of width Δx and we’ll denote the point on the curve at each point 

by P
i
. We can then approximate the curve by a series of straight lines connecting the points. 

Now denote the length of each of these line segments by |P
i−1, Pi

| and the length of the curve will 

then be approximately, 

 

𝐿 ≈∑|𝑃𝑖−1 − 𝑃𝑖|

𝑛

𝑖=1

 

And we can get the exact length by taking n larger and larger, towards infinity. In other words, the 

exact length will be, 

 

𝐿 = lim
𝑛→∝

∑|𝑃𝑖−1 − 𝑃𝑖|

𝑛

𝑖=1

 

Now, let’s get a better grasp on the length of each of these line segments. First, on each segment 

let’s define, 

 

 

 We can then compute directly the length of the line segments as follows: 
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|𝑃𝑖 − 𝑃𝑖−1| = (√1 + (𝑓′(𝑥 ∗))
2)𝜟𝑥    𝑜𝑟,  = (√1 + (

1

𝑓′(𝑥 ∗)
)2)𝜟𝑦 

The exact length of the curve is then, 

 

However, using the definition of the definite integral, this is nothing more than, 

 

A slightly more convenient notation (in our opinion anyway) is the following. 

 

 

 

In a similar fashion we can also derive a formula for x=h(y) on [c, d]. This formula is, 

 

 

 

EXAMPLE 9.16  

Find the length of the arc, 𝑦 =  
𝑥3

3
+

1

4𝑥
, 1 ≪ 𝑥 ≪ 2  as shown in Figure 9.13 

 

Figure: 9.20 

 

Solution: 
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The derivative is,  

 

We calculate a perfect square as follows: 

 

Then we obtain, 

 

 

EXAMPLE 9.17  

Find the arc length of 𝑓(𝑥) =
𝑥2

8
− 𝑙𝑛𝑥, 1 ≤ 𝑥 ≤ 𝑒 as shown in Figure 9.14 

 

 

Figure 9.21 

 

Solution: 

The derivative is,  
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The integrand of the arc length integral is given by, 

 

Then we find, 

 

 

 

 

 

Let C be a right circular cone with a base radius of r and slant height h, 

see Figure 9.21. If we slice open the cone at its vertex along a slant 

height and lay it on a plane, we obtain a sector of a circle of radius h and 

an intercepted arc of length 2πr. Then the central angle θ of the sector 

satisfies: 

 

ℎ𝜃 = 2𝜋𝑟 

 

Consequently, the area of the sector (or equivalently the surface area of 

C) is,  

(𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑐𝑜𝑛𝑒) =
𝜃

2
ℎ2 = 𝜋𝑟ℎ                            (9.4) 

Next, consider a frustum of a cone with radii r2 > r1 and slant height l, see 

Figure 9.22. Using similar right triangles, as shown in Figure 9.23, 

where, 

 

l = l2 − l1 

 

We get, 

9.7 THE AREA OF A SURFACE OF REVOLUTION  
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𝑙2
𝑟2
=  
𝑙1
𝑟1

 

Note, the surface area of a frustum is the difference of the surface areas of two cones. Applying 

formula (9.4), we obtain, 

 

 

 

EXAMPLE 9.18  

Compute the surface area of a sphere of radius r. The sphere can be obtained by rotating the graph 

of 𝑓(𝑥) =  √𝑟2 − 𝑥2 about the x-axis.  

 

Solution: 

The derivative f′ is −𝑥/√𝑟2 − 𝑥2, so the surface area is given by, 

 

 

 

If the curve is rotated around the y axis, the formula is nearly identical, because the length of the 

line segment we use to approximate a portion of the curve doesn’t change. Instead of the 

radius𝑓(𝑥𝑖
∗)̇ , we use the new radius 𝑥𝑖̅  = (𝑥𝑖 − 𝑥𝑖+1)/2, and the surface area integral becomes,  

 

 

 

EXAMPLE 9.19  

Compute the area of the surface formed when f(x) = x2 between 0 and 2 is rotated around the y-axis. 

 

Solution: 
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We compute f′(x) = 2x, and then, 

 

by a simple substitution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




