Skip to main content

Tutorial 1

Tutorial 1: Functions, Derivatives & Engineering Applications

Tutorial QuestionTutorial Solution
  1. Evaluate the limit for the following if it exists:

    a. limx5x225x2+x30\displaystyle \lim _{x \rightarrow 5} \frac{x^{2}-25}{x^{2}+x-30}

    Solution
    limx5x225x2+x30=limx5(x5)(x+5)(x5)(x+6)=limx5(x+5)(x+6)=(5+5)(5+6)=1011\begin{aligned} \lim _{x \rightarrow 5} \frac{x^{2}-25}{x^{2}+x-30} &=\lim _{x \rightarrow 5} \frac{(x-5)(x+5)}{(x-5)(x+6)}\\ &=\lim _{x \rightarrow 5} \frac{(x+5)}{(x+6)}\\ &=\frac{(5+5)}{(5+6)}\\ &=\frac{10}{11} \end{aligned}

    b. limx9x3x9\displaystyle \lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}

    Solution
    limx9x3x9=limx9(x3)(x+3)x9(x+3)=limx9(x9)(x9)(x+3)=limx91(x+3)=1(9+3)=16\begin{aligned} \lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} &=\lim _{x \rightarrow 9} \frac{(\sqrt{x}-3)(\sqrt{x}+3)}{x-9(\sqrt{x}+3)}\\ &=\lim _{x \rightarrow 9} \frac{(x-9)}{(x-9)(\sqrt{x}+3)}\\ &=\lim _{x \rightarrow 9} \frac{1}{(\sqrt{x}+3)}\\ &=\frac{1}{(\sqrt{9}+3)}\\ &=\frac{1}{6} \end{aligned}

    c. limx0x3x+9\displaystyle \lim _{x \rightarrow 0} \frac{x}{3-\sqrt{x+9}}

    Solution
    limx0x3x+9=limx0x(3x+9)(3+x+9)(3+x+9)=limx0x(3+x+9)9(x+9)=limx0x(3+x+9)x=limx03+x+91=6\begin{aligned} \lim _{x \rightarrow 0} \frac{x}{3-\sqrt{x+9}} &=\lim _{x \rightarrow 0} \frac{x}{(3-\sqrt{x+9)}} \frac{(3+\sqrt{x+9})}{(3+\sqrt{x+9)}}\\ &=\lim _{x \rightarrow 0} \frac{x(3+\sqrt{x+9})}{9-(x+9)}\\ &=\lim _{x \rightarrow 0} \frac{x(3+\sqrt{x+9})}{-x}\\ &=\lim _{x \rightarrow 0} \frac{3+\sqrt{x+9}}{-1}\\ &=-6 \end{aligned}
  1. Find the derivative of log(4+cosx)\log(4+\cos x).

    Solution
    D(logx)=1xloge=1xln10D[log(4+cosx)]=14+cosx(loge)D(4+cosx)=14+cosx(loge)(sinx)=(loge)(sinx)4+cosx\begin{aligned} D(\log x) &=\frac{1}{x} \log e=\frac{1}{x \ln 10} \\ D[\log (4+\cos x)] &=\frac{1}{4+\cos x}(\log e) D(4+\cos x)\\ &=\frac{1}{4+\cos x}(\log e)(-\sin x)\\ &=\frac{-(\log e)(\sin x)}{4+\cos x} \end{aligned}
  1. Find dydx\frac{dy}{dx} for cos(x2)=xey\cos(x^2)=xe^y.

    Solution
    cos(x2)=xeysin(x2)2x=xeydydx+eyxeydydx=2xsin(x2)eydydx=2xsin(x2)eyxey\begin{aligned} \cos \left(x^{2}\right) &=x e^{y} \\ -\sin \left(x^{2}\right) \cdot 2 x &=x e^{y} \frac{d y}{d x}+e^{y}\\ x e^{y} \frac{d y}{d x} &=-2 x \sin \left(x^{2}\right)-e^{y} \\ \frac{d y}{d x} &=\frac{-2 x \sin \left(x^{2}\right)-e^{y}}{x e^{y}} \end{aligned}
  2. Find dydx\frac{dy}{dx} for x3y32y=xx^3y^3-2y=x.

    Solution
    x3[3y2(dydx)]+y3[3x2]2(dydx)=13x3y2(dydx)+3x2y32(dydx)=13x3y2(dydx)2(dydx)=13x2y3dydx=13x2y33x3y22\begin{aligned} x^{3}\left[3 y^{2}\left(\frac{d y}{d x}\right)\right]+y^{3}\left[3 x^{2}\right]-2\left(\frac{d y}{d x}\right)&=1 \\ 3 x^{3} y^{2}\left(\frac{d y}{d x}\right)+3 x^{2} y^{3}-2\left(\frac{d y}{d x}\right)&=1 \\ 3 x^{3} y^{2}\left(\frac{d y}{d x}\right)-2\left(\frac{d y}{d x}\right)&=1-3 x^{2} y^{3} \\ \frac{d y}{d x}&=\frac{1-3 x^{2} y^{3}}{3 x^{3} y^{2}-2} \end{aligned}
  3. A curve in the plane is defined parametrically by the equations x=7ln(t)x=7\ln(t) and y=14ty=\sqrt{1-4t}. Find dydx\frac{dy}{dx}.

    Solution
    dydx=(dydt)(dxdt)=ddt(14t)ddt(7ln(t))=12(14t)12(4)7t=2t714t\begin{aligned} \frac{d y}{d x}&=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}\\ &=\frac{\frac{d}{d t}(\sqrt{1-4 t})}{\frac{d}{d t}(7 \ln (t))}\\ &=\frac{\frac{1}{2}(1-4 t)^{-\frac{1}{2}} \cdot(-4)}{\frac{7}{t}}\\ &=-\frac{2 t}{7 \sqrt{1-4 t}} \end{aligned}
  4. A curve in the plane is defined parametrically by the equations x=t21x=t^2-1 and y=2ety=2e^t. Find dydt\frac{dy}{dt}.

    Solution
    dydx=(dydt)(dxdt)=ddt(2et)ddt(t21)=2et2t=ett\begin{aligned} \frac{d y}{d x}&=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}\\ &=\frac{\frac{d}{d t}\left(2 e^{t}\right)}{\frac{d}{d t}\left(t^{2}-1\right)}\\ &=\frac{2 e^{t}}{2 t}=\frac{e^{t}}{t} \end{aligned}
  5. Find yy' for each of the following:

    a. x2tan(y)+y10sec(x)=2xx^2\tan(y)+y^{10}\sec(x)=2x

    Solution
    2xtan(y)+x2sec2(y)y+10y9ysec(x)+y10sec(x)tan(x)=2(x2sec2(y)+10y9sec(x))y=2y10sec(x)tan(x)2xtan(y)y=2y10sec(x)tan(x)2xtan(y)x2sec2(y)+10y9sec(x)\begin{aligned} 2 x \tan (y)+x^{2} \sec ^{2}(y) y^{\prime}&+10 y^{9} y^{\prime} \sec (x)+y^{10} \sec (x) \tan (x)=2 \\ \left(x^{2} \sec ^{2}(y)+10 y^{9} \sec (x)\right) y^{\prime}&=2-y^{10} \sec (x) \tan (x)-2 x \tan (y) \\ y^{\prime}&=\frac{2-y^{10} \sec (x) \tan (x)-2 x \tan (y)}{x^{2} \sec ^{2}(y)+10 y^{9} \sec (x)} \end{aligned}

    b. x3y5+3x=8y3+1x^3y^5+3x=8y^3+1

    Solution
    3x2y5+5x3y4y+3=24y2y3x2y5+3=24y2y5x3y4yy=3x2y5+324y25x3y4\begin{aligned} 3 x^{2} y^{5}+5 x^{3} y^{4} y^{\prime}+3&=24 y^{2} y^{\prime} \\ 3 x^{2} y^{5}+3&=24 y^{2} y^{\prime}-5 x^{3} y^{4} y^{\prime} \\ y^{\prime}&=\frac{3 x^{2} y^{5}+3}{24 y^{2}-5 x^{3} y^{4}} \end{aligned}

    c. e2x+3y=x2ln(xy3)e^{2x+3y}=x^2-\ln(xy^3)

    Solution
    2e2x+3y+3ye2x+3y=2xy3xy33xy2yxy32e2x+3y+3ye2x+3y=2x1x3yy(3e2x+3y+3y1)y=2xx12e2x+3yy=2xx12e2x+3y3e2x+3y+3y1\begin{aligned} 2 e^{2 x+3 y}+3 y^{\prime} e^{2 x+3 y}&=2 x-\frac{y^{3}}{x y^{3}}-\frac{3 x y^{2} y^{\prime}}{x y^{3}} \\ 2 e^{2 x+3 y}+3 y^{\prime} e^{2 x+3 y}&=2 x-\frac{1}{x}-\frac{3 y^{\prime}}{y} \\ \left(3 e^{2 x+3 y}+3 y^{-1}\right) y^{\prime}&=2 x-x^{-1}-2 e^{2 x+3 y} \\ y^{\prime}&=\frac{2 x-x^{-1}-2 e^{2 x+3 y}}{3 e^{2 x+3 y}+3 y^{-1}} \end{aligned}
  6. Solve for yy' if y=ln(cosx2)y=\ln(\cos x^2).

    Solution

    Let u=cosx2u=\cos x^{2}, then dudx=(sinx2)(2x)\frac{d u}{d x}=\left(-\sin x^{2}\right)(2 x),

    y=lnu, then dydu=1uy=\ln u, \text { then } \frac{d y}{d u}=\frac{1}{u}

    dydx=(1u)(sinx2)(2x)=2xsinx2cosx2=2xtanx2\begin{aligned} \frac{d y}{d x}&=\left(\frac{1}{u}\right)\left(-\sin x^{2}\right)(2 x)\\ &=-\frac{2 x \sin x^{2}}{\cos x^{2}}\\ &=-2 x \tan x^{2} \end{aligned}
  7. Find yy' for 10e2xy=e15y+e13x10e^{2xy}=e^{15y}+e^{13x}.

    Solution
    10e2xy=e15y+e13x10e2xy(2xy+2y)=e15y(15y)+e13x(13)10e2xy(2xy+2y)=15ye15y+13e13x(20xe2xy15e15y)y=13e13x20ye2xyy=13e13x20ye2xy20xe2xy15e15y\begin{aligned} 10 e^{2 x y}&=e^{15 y}+e^{13 x}\\ 10 e^{2 x y}\left(2 x y^{\prime}+2 y\right)&=e^{15 y}\left(15 y^{\prime}\right)+e^{13 x}(13)\\ 10 e^{2 x y}\left(2 x y^{\prime}+2 y\right)&=15 y^{\prime} e^{15 y}+13 e^{13 x} \\ \left(20 x e^{2 x y}-15 e^{15 y}\right) y^{\prime}&=13 e^{13 x}-20 y e^{2 x y} \\ y^{\prime}&=\frac{13 e^{13 x}-20 y e^{2 x y}}{20 x e^{2 x y}-15 e^{15 y}} \end{aligned}
  8. Solve f(x)f'(x) if f(x)=2x(arctan5x)2+6tan(cos6x)f(x)=2x(\arctan 5x)^2+6\tan(\cos 6x).

    Solution

    f(x)=2x(arctan5x)2+6tan(cos6x)f(x)=2 x(\arctan 5 x)^{2}+6 \tan (\cos 6 x) ddx(tan15x)2=2tan15x(11+(5x)2)(5)=10tan15x1+25x2\frac{d}{d x}\left(\tan ^{-1} 5 x\right)^{2}=2 \tan ^{-1} 5 x\left(\frac{1}{1+(5 x)^{2}}\right)(5)=\frac{10 \tan ^{-1} 5 x}{1+25 x^{2}} ddx2x(tan15x)2=2x(10tan15x1+25x2)+(tan15x)2(2)=20xtan15x1+25x2+2(tan15x)2\begin{aligned} \frac{d}{d x} 2 x\left(\tan ^{-1} 5 x\right)^{2}&=2 x\left(\frac{10 \tan ^{-1} 5 x}{1+25 x^{2}}\right)+\left(\tan ^{-1} 5 x\right)^{2}(2)\\ &=\frac{20 x \tan ^{-1} 5 x}{1+25 x^{2}}+2\left(\tan ^{-1} 5 x\right)^{2} \end{aligned} ddx6tan(cos6x)=6sec2(cos6x)ddxcos6x=6sec2(cos6x)×(sin6x)×6=36(sec2(cos6x))sin6x\begin{aligned} \frac{d}{d x} 6 \tan (\cos 6 x)&=6 \sec ^{2}(\cos 6 x) \frac{d}{d x} \cos 6 x\\ & =6 \sec ^{2}(\cos 6 x) \times(-\sin 6 x) \times 6 \\ & =-36\left(\sec ^{2}(\cos 6 x)\right) \sin 6 x \end{aligned}

    Therefore, f(x)=20xtan15x1+25x2+2(tan15x)236(sec2(cos6x))sin6xf^{\prime}(x)=\frac{20 x \tan ^{-1} 5 x}{1+25 x^{2}}+2\left(\tan ^{-1} 5 x\right)^{2}-36\left(\sec ^{2}(\cos 6 x)\right) \sin 6 x

  9. Solve yy' if y=4xsinh1(x6)+tanh1(cos10x)y=4x\sinh^{-1}(\frac{x}{6})+\tanh^{-1}(\cos 10x).

    Solution
    ddx4xsinh1(x6)=4x[11+(x6)216]+4sinh1(x6)=2x31+x236+4sinh1(x6)\begin{aligned}\frac{d}{d x} 4 x \sinh ^{-1}\left(\frac{x}{6}\right)&=4 x\left[\frac{1}{\sqrt{1+\left(\frac{x}{6}\right)^{2}}} \cdot \frac{1}{6}\right]+4 \sinh ^{-1}\left(\frac{x}{6}\right)\\ &=\frac{\frac{2 x}{3}}{\sqrt{1+\frac{x^{2}}{36}}}+4 \sinh ^{-1}\left(\frac{x}{6}\right) \end{aligned}
    ddxtanh1(cos10x)=11(cos10x)2(ddxcos10x)=11(cos10x)2(10sin10x)=10sin10x1cos210x=10sin210xsin210x=10sin10x=10csc10x\begin{aligned} \frac{d}{d x} \tanh ^{-1}(\cos 10 x) \quad &=\frac{1}{1-(\cos 10 x)^{2}}\left(\frac{d}{d x} \cos 10 x\right)\\ &=\frac{1}{1-(\cos 10 x)^{2}}(-10 \sin 10 x) \\ &=\frac{-10 \sin 10 x}{1-\cos ^{2} 10 x} \\ &=-\frac{10 \sin ^{2} 10 x}{\sin ^{2} 10 x} \\ &=-\frac{10}{\sin 10 x}\\ &=-10 \csc 10 x \end{aligned}
    f(x)=2x31+x236+4sinh1(x6)10csc10x\begin{aligned} \therefore f'(x)=\frac{\frac{2x}{3}}{\sqrt{1+\frac{x^2}{36}}}+4\sinh^{-1}{(\frac{x}{6})}-10\csc{10x} \end{aligned}
  10. The engineering discipline of piping design studies the efficient transport of fluid. You are required to design a stable pipe that can hold 200 litres of fluid at a time. Assuming that it is a closed ended pipe at both ends, determine the dimensions (radius and height in cm) of the pipe that will minimize the amount of material used to construct the pipe with justification.

    Figure for Question 13
    Solution
    A=2πr2+2πrhπr2h=200,000h=200,000πr2\begin{align} A&=2\pi r^2+2\pi r h \\ \pi r^2 h&= 200,000 \quad \Rightarrow h=\frac{200,000}{\pi r^2} \end{align}
    A(r)=2πr2+400,000rA(r)=4πr400,000r2\begin{aligned} A(r) &= 2\pi r^2 + \frac{400,000}{r} \\ A'(r) &= 4\pi r - \frac{400,000}{r^2} \end{aligned}

    Find critical number, A(r)=0A'(r)=0, Radius, r=31.7 cm\text{Radius, }r = 31.7\text{ cm}

    A(r)=4π+800,000r3A''(r)=4\pi + \frac{800,000}{r^3} → +ve → concavity: concave upward → min point.

    Hence h=63.3 cmh = 63.3 \text{ cm}.

  11. You are a manufacturer of metal cones. In order to minimize the material used in the manufacturing process, you need to fabricate the metal cones shown below. You are provided with 3 copper cones with total volume of 15m315 m^3. Each cone consists of the flat base surface and lateral surface. Determine the possible dimensions of the lateral surface for each cone to estimate the amount of copper material needed to construct each cone’s lateral surface. (Given the dimensions of cone are height of the cone, hh, the slant length, ss, and the radius of the base, rr ).

    Figure for Question 13
    Solution

    Volume of each cone =13πr2h=5,h=15πr2=\frac{1}{3} \pi r^{2} h=5, \quad h=\frac{15}{\pi r^{2}}

    Area, A(r)\mathrm{A}(r) in terms of rr by substituting hh.

    A(r)=πrs where s is the slant length, A(r)=πr(r2+h2)A(r)=πr(r2+(15πr2)2)\begin{aligned} \mathrm{A}(r)&=\pi r s \quad \text { where } s \text { is the slant length, } \\ \mathrm{A}(r)&=\pi r\left(\sqrt{r^{2}+h^{2}}\right) \\ \mathrm{A}(r)&=\pi r\left(\sqrt{r^{2}+\left(\frac{15}{\pi r^{2}}\right)^{2}}\right) \end{aligned}

    Find A(r)A^{\prime}(r)

    u(r)=πru(r)=πv(r)=r2+(15πr2)2v(r)=12(r2+152π2r4)12(2r4(2259.87)r5=12(r2+22.8r4)12(2r91.185r5)A(r)=12πr(r2+22.8r4)12(2r91.185r5)+πr2+(15πr2)2\begin{aligned} \mathrm{u}(r) &=\pi r \quad \mathrm{u}^{\prime}(r)=\pi \\ \mathrm{v}(r) &=\sqrt{r^{2}+\left(\frac{15}{\pi r^{2}}\right)^{2}} \\ \mathrm{v}^{\prime}(r) &=\frac{1}{2}\left(r^{2}+\frac{15^{2}}{\pi^{2} r^{4}}\right)^{-\frac{1}{2}} \cdot\left(2 r-4\left(\frac{225}{9.87}\right) r^{-5}\right.\\ &=\frac{1}{2}\left(r^{2}+\frac{22.8}{r^{4}}\right)^{-\frac{1}{2}} \cdot\left(2 r-\frac{91.185}{r^{5}}\right) \\ \mathrm{A}^{\prime}(r) &=\frac{1}{2} \pi r\left(r^{2}+\frac{22.8}{r^{4}}\right)^{-\frac{1}{2}} \cdot\left(2 r-\frac{91.185}{r^{5}}\right)+\pi \sqrt{r^{2}+\left(\frac{15}{\pi r^{2}}\right)^{2}} \end{aligned}

    Find critical numbers when A(r)=0\mathrm{A}^{\prime}(r)=0.

    91.185r512πr2r2πr(r2+22.8r4)12=+πr2+(15πr2)2143.25r4πr2=π(r2+22.8r4)1r4(143.2571.64)=2πr2r=1.5 m\begin{aligned} \frac{\frac{91.185}{r^{5}} \cdot \frac{1}{2} \pi r-\frac{2 r}{2} \pi r}{\left(r^{2}+\frac{22.8}{r^{4}}\right)^{\frac{1}{2}}}&=+\pi \sqrt{r^{2}+\left(\frac{15}{\pi r^{2}}\right)^{2}} \\ \frac{143.25}{r^{4}}-\pi r^{2}&=\pi\left(r^{2}+\frac{22.8}{r^{4}}\right) \\ \frac{1}{r^{4}}(143.25-71.64)&=2 \pi r^{2} \\ r&=1.5 \mathrm{~m} \end{aligned}

    Hence, dimension :

    • Radius, r=1.5 mr=1.5 \mathrm{~m},
    • Height, h=15πr2=2.1 m\displaystyle h=\frac{15}{\pi r^{2}}=2.1 \mathrm{~m}
    • Slant length, s=r2+h2=2.25+4.41=2.58 ms=\sqrt{r^{2}+h^{2}}=\sqrt{2.25+4.41}=2.58 \mathrm{~m}
Your Help needed

This website has received 3000 view in the first two weeks! However, this project repository did not receive any star! Just simply head over to this website's repository to give it a star! Every tutorial takes me around two hours to compile, proof-read and styling this website! Your simple action would encourage me a lot! Thank you! You could Buy me a coffee too!