Skip to main content

Tutorial 4

Tutorial 4: Vector Algebra II

Tutorial QuestionTutorial Solution
  1. Two long straight pipes are specified using Cartesian coordinates as follow:

    Pipe A: diameter 0.80.8; axis through points (2,5,3)(2,5,3) and (7,10,8)(7,10,8).

    Pipe B: diameter 1.01.0; axis through points (0,6,3)(0,6,3) and (12,0,9)(-12,0,9).

    Explain if the two pipes require realignment to prevent intersection.

    Solution

    Pipe A and B have axes:

    rA=[2,5,3]+λ[5,5,5]=[2,5,3]+λ[1,1,1]3]rB=[0,6,3]+μ[12,6,6]=[0,6,3]+μ[2,1,1]6\begin{aligned} \mathbf{r}_{A} &=[ 2,5,3] +\lambda '[ 5,5,5] =[ 2,5,3] +\lambda \frac{[ 1,1,1]}{\sqrt{3}}]\\ \mathbf{r}_{B} &=[ 0,6,3] +\mu '[ -12,-6,6] =[ 0,6,3] +\mu \frac{[ -2,-1,1]}{\sqrt{6}} \end{aligned}
    Figure for Answer 1

    (Non-unit) perpendicular to both axes is

    p=i^j^k^111211=[2,3,1]\mathbf{p} =\begin{vmatrix} \hat{\mathbf{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}}\\ 1 & 1 & 1\\ -2 & -1 & 1 \end{vmatrix} =[ 2,-3,1]

    The length of the mutual perpendicular is mod

    (ab)[2,3,1]14=[2,1,0][2,3,1]14=1.87(\mathbf{a} -\mathbf{b}) \cdot \frac{[ 2,-3,1]}{\sqrt{14}} =[ 2,-1,0] \cdot \frac{[ 2,-3,1]}{\sqrt{14}} =1.87

    Sum of the radii of the pipes is 0.4+0.5=0.90.4+0.5=0.9. Hence, the pipes do not intersect.

  2. Determine if the sets of vectors given are parallel or non-parallel. Show your answers:

    i. a=2,4,1\underset{\sim}{a}=\langle 2,4,-1\rangle and b=6,12,3\underset{\sim}{b}=\langle-6,-12,3\rangle

    Solution

    These two vectors are parallel since b=3a\underset{\sim}{b}=-3\underset{\sim}{a}

    ii. a=4,10\underset{\sim}{a}=\langle 4,10\rangle and b=2,9\underset{\sim}{b}=\langle 2,-9\rangle

    Solution

    These two vectors are not parallel since there is no scalar aa that can fulfil the scalar multiplication where aab\underset{\sim}{a}\neq a\underset{\sim}{b}

  3. Find the unit vectors that are perpendicular to the vectors a\underset{\sim}{a} and b\underset{\sim}{b} as following:

    i. a=2,4,5,b=1,2,2\underset{\sim}{a}=\langle 2,4,5\rangle, \underset{\sim}{\underset{\sim}{b}}=\langle 1,2,-2\rangle

    Solution

    Vector perpendicular to both vector a\underset{\sim }{a} and b\underset{\sim }{b} is a×b\underset{\sim }{a} \times \underset{\sim }{b}.

    Unit vector of a×b\underset{\sim }{a} \times \underset{\sim }{b} is a×b=a×ba×b\underset{\sim }{a} \times \underset{\sim }{b} =\frac{\underset{\sim }{a} \times \underset{\sim }{b}}{\left\vert \underset{\sim }{a} \times \underset{\sim }{b}\right\vert }.

    a×b=ijk245122=i(8+10)j(4+5)+k(44)=2,1,0\underset{\sim }{a} \times \underset{\sim }{b} =\begin{vmatrix} \underset{\sim }{i} & \underset{\sim }{j} & \underset{\sim }{k}\\ 2 & 4 & 5\\ 1 & 2 & -2 \end{vmatrix} =\underset{\sim }{i}( -8+10) -\underset{\sim }{j}( -4+5) +\underset{\sim }{k}( 4-4) =\langle -2,-1,0\rangle

    a×b=a×ba×b=2,1,0(2)2+(1)2=25,15,0\underset{\sim }{a} \times \underset{\sim }{b} =\frac{\underset{\sim }{a} \times \underset{\sim }{b}}{\left\vert \underset{\sim }{a} \times \underset{\sim }{b}\right\vert } =\frac{\langle -2,-1,0\rangle }{\sqrt{( -2)^{2} +( -1)^{2}}} =\langle \frac{-2}{\sqrt{5}} ,\frac{-1}{\sqrt{5}} ,0\rangle

    The unit vector is exist in this case.

    ii. a=2,4,4,b=1,2,2\underset{\sim}{a}=\langle 2,4,-4\rangle, \underset{\sim}{b}=\langle 1,2,-2\rangle

    Solution
    a×b=ijk244122=i(8+8)j(4+4)+k(44)=0,0,0\underset{\sim }{a} \times \underset{\sim }{b} =\begin{vmatrix} \underset{\sim }{i} & \underset{\sim }{j} & \underset{\sim }{k}\\ 2 & 4 & 4\\ 1 & 2 & -2 \end{vmatrix} =\underset{\sim }{i}( -8+8) -\underset{\sim }{j}( -4+4) +\underset{\sim }{k}( 4-4) =\langle 0,0,0\rangle

    a×b=a×ba×b=0,0,00\underset{\sim }{a} \times \underset{\sim }{b} =\frac{\underset{\sim }{a} \times \underset{\sim }{b}}{\left\vert \underset{\sim }{a} \times \underset{\sim }{b}\right\vert } =\frac{\langle 0,0,0\rangle }{0}

    The unit vector does not exist in this case.

    We know that the unit vector always have magnitude of 1. However since the zero vector has magnitude of 0, the unit vector of zero vector does not exist. In common practice, we have several remedy options depending on your application:

    • Return a×b=\underset{\sim }{a}\times\underset{\sim }{b}= zero vector
    • Return (a×b)=NaN(\underset{\sim }{a}\times\underset{\sim }{b})=NaN (i.e, Not a number)
  4. Find the distance from P=(3,7,4)P=(-3,7,4) to the line ll with vector equation;

    r=(223)+λ(453)r=\left(\begin{array}{c} 2 \\ -2 \\ -3 \end{array}\right)+\lambda\left(\begin{array}{c} 4 \\ -5 \\ 3 \end{array}\right)
    Solution

    Here a=(223)\mathbf{a} =\begin{pmatrix}2\\-2\\-3\end{pmatrix}, A=(2,2,3)A=( 2,-2,3) and u=(453)\mathbf{u}=\begin{pmatrix}4\\-5\\3\end{pmatrix}. So, AP\overrightarrow{AP} represents v=pa=(374)(223)=(597)\mathbf{v} =\mathbf{p} -\mathbf{a} =\begin{pmatrix}-3\\7\\4\end{pmatrix} -\begin{pmatrix}2\\-2\\-3\end{pmatrix} =\begin{pmatrix}-5\\9\\7\end{pmatrix}. Now,

    u×v=5397i4357j+4559k=(624311)\mathbf{u} \times \mathbf{v} =\begin{vmatrix} -5 & 3\\ 9 & 7 \end{vmatrix}\mathbf{i} -\begin{vmatrix} 4 & 3\\ -5 & 7 \end{vmatrix}\mathbf{j} +\begin{vmatrix} 4 & -5\\ -5 & 9 \end{vmatrix}\mathbf{k} =\begin{pmatrix} -62\\ -43\\ 11 \end{pmatrix}

    Therefore, u×v=(62)2+(43)2+112=3646\vert \mathbf{u} \times \mathbf{v}\vert =\sqrt{( -62)^{2} +( -43)^{2} +11^{2}} =3\sqrt{646} and u=42+(5)2+32=52\vert \mathbf{u}\vert =\sqrt{4^{2} +( -5)^{2} +3^{2}} =5\sqrt{2}.

    The distance is,

    u×vu=364652=33235\frac{\vert\mathbf{u} \times \mathbf{v}\vert}{\vert \mathbf{u}\vert } =\frac{3\sqrt{646}}{5\sqrt{2}} =\frac{3\sqrt{323}}{5}

    Note that we have v×u=(pa)×u=(u×v)\mathbf{v} \times \mathbf{u} =(\mathbf{p} -\mathbf{a}) \times \mathbf{u} =-(\mathbf{u} \times \mathbf{v}) and so v×u=(pa)×u=u×v\vert \mathbf{v} \times \mathbf{u}\vert =\vert (\mathbf{p} -\mathbf{a}) \times \mathbf{u}\vert =\vert \mathbf{u} \times \mathbf{v}\vert.

  5. Calculate the distance between the lines ll and mm having vector equations r=a+λu\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{u} and r=b+μv\boldsymbol{r}=\boldsymbol{b}+\mu \boldsymbol{v} respectively, where;

    a=(041),u=(132),b=(210) and v=(312)\boldsymbol{a}=\left(\begin{array}{c} 0 \\ 4 \\ -1 \end{array}\right), \boldsymbol{u}=\left(\begin{array}{c} 1 \\ -3 \\ -2 \end{array}\right), \boldsymbol{b}=\left(\begin{array}{c} 2 \\ -1 \\ 0 \end{array}\right) \text { and } \boldsymbol{v}=\left(\begin{array}{c} -3 \\ 1 \\ 2 \end{array}\right)
    Solution

    We have ba=2i5j+k\mathbf{b} -\mathbf{a} =2\mathbf{i} -5\mathbf{j} +k and

    u×v=(132)×(312)=3122i1322j+1331k=(448)\mathbf{u} \times \mathbf{v} =\begin{pmatrix} 1\\ -3\\ -2 \end{pmatrix} \times \begin{pmatrix} -3\\ 1\\ 2 \end{pmatrix} =\begin{vmatrix} -3 & 1\\ -2 & 2 \end{vmatrix}\mathbf{i} -\begin{vmatrix} 1 & -3\\ -2 & 2 \end{vmatrix}\mathbf{j} +\begin{vmatrix} 1 & -3\\ -3 & 1 \end{vmatrix}\mathbf{k} =\begin{pmatrix} -4\\ 4\\ -8 \end{pmatrix}

    Thus, we get (ba)(u×v)=8208=36(\mathbf{b} -\mathbf{a}) \cdot (\mathbf{u} \times \mathbf{v}) =-8-20-8=-36 and u×v=(4)2+42+(8)2=46\vert \mathbf{u} \times \mathbf{v}\vert =\sqrt{( -4)^{2} +4^{2} +( -8)^{2}} =4\sqrt{6} The distance from ll to mm is

    (ba)(u×v)u×v=3696=3646=96\frac{\vert \mathbf{( b - a) \cdot ( u} \times \mathbf{v})\vert }{\vert \mathbf{u} \times \mathbf{v}\vert } =\frac{\vert -36\vert }{\sqrt{96}} =\frac{36}{4\sqrt{6}} =\frac{9}{\sqrt{6}}
  6. Find the following equation of line for the line LL passing through the point P(3,1,2)P(3,1,-2) and Q(2,7,4)Q(-2,7,-4)

    i. Vector equation

    Solution

    PQ=OQOP=2,7,43,1,2=5,6,2\overrightarrow{PQ}=\overrightarrow{OQ}-\overrightarrow{O P}=\langle-2,7,-4\rangle-\langle 3,1,-2\rangle=\langle-5,6,-2\rangle is vector parallel to the line LL

    The vector equation of the line, r=a+tv\underset{\sim}{r}=\underset{\sim}{a}+t\underset{\sim}{v} where a\underset{\sim}{a} is position vector of any point at the line and v\underset{\sim}{v} is vector parallel to the line.

    Thus, r=3,1,2+t5,6,2\underset{\sim}{r}=\langle 3,1,-2\rangle+t\langle-5,6,-2\rangle is the vector equation of line LL

    Noted that r=2,7,4+t5,6,2\underset{\sim}{r}=\langle-2,7,4\rangle+t\langle-5,6,-2\rangle is also acceptable. To generate consistent data, we always use the first point.

    ii. Parametric equation

    Solution

    r=x,y,z\underset{\sim}{r}=\langle x, y, z\rangle

    Compare both side,

    x=35ty=1+6t,tRz=22t\begin{aligned} x&=3-5t\\ y&=1+6t,\quad t\in \mathbb{R}\\ z&=-2-2t \end{aligned}

    iii.Cartesian equation

    Solution

    Eliminating the parameter tt, we get

    x35=y16=z+22\frac{x-3}{-5}=\frac{y-1}{6}=\frac{z+2}{-2}
  7. Find the Cartesian equation of plane contains the point (1,2,1)(1,2,-1) and perpendicular to the intersecting line of the planes and 2x+y+z=22 x+y+z=2 and x+2y+z=3x+2 y+z=3.

    Solution

    The intersecting line has vector that is parallel to both planes, which is the cross product of their respectively normal vector,

    n1×n2=ijk211121=i(12)j(21)+k(41)=1,1,3\underset{\sim }{n}_{1} \times \underset{\sim }{n}_{2} =\begin{vmatrix} \underset{\sim }{i} & \underset{\sim }{j} & \underset{\sim }{k}\\ 2 & 1 & 1\\ 1 & 2 & 1 \end{vmatrix} =\underset{\sim }{i}( 1-2) -\underset{\sim }{j}( 2-1) +\underset{\sim }{k}( 4-1) =\langle -1,-1,3\rangle

    The Cartesian equation of plane that perpendicular to the intersecting line has the normal vector that is parallel to the vector n1×n2=1,1,3\underset{\sim }{n}_{1} \times \underset{\sim }{n}_{2} =\langle -1,-1,3\rangle

    Therefore, Cartesian equation of plane is xy+3z=k-x-y+3z=k. Substitute the point (1,2,1)( 1,2,-1) which is located on the plane to find kk, k=12+3(1)=6k=-1-2+3( -1) =-6

    xy+3z=6\therefore -x-y+3z=-6
  8. Find the Cartesian equation of plane contains the line L1:r1=a+tu=1,3,4+L_{1}: \boldsymbol{r}_{\mathbf{1}}=\boldsymbol{a}+t \boldsymbol{u}=\langle 1,-3,4\rangle+ 2,1,1t\langle 2,1,1\rangle t and parallel to the line L2:r2=b+sv=0,0,0+1,2,3sL_{2}: \boldsymbol{r}_{2}=\boldsymbol{b}+s \boldsymbol{v}=\langle 0,0,0\rangle+\langle 1,2,3\rangle s. Then, proof that the plane is parallel to line L2L_{2} ?

    Solution

    The normal vector of the plane that containing two lines is

    u×v=ijk211123=i(32)j(61)+k(41)=1,5,3\underset{\sim }{u} \times \underset{\sim }{v} =\begin{vmatrix} \underset{\sim }{i} & \underset{\sim }{j} & \underset{\sim }{k}\\ 2 & 1 & 1\\ 1 & 2 & 3 \end{vmatrix} =\underset{\sim }{i}( 3-2) -\underset{\sim }{j}( 6-1) +\underset{\sim }{k}( 4-1) =\langle 1,-5,3\rangle

    Therefore, Cartesian equation of plane is x5y+3z=k-x-5y+3z=k. Substitute point A(1,3,4)A( 1,-3,4) to find kk,

    k=15(3)+3(4)=28k=1-5( -3) +3( 4) =28
    x5y+3z=28\therefore x-5y+3z=28

    Note: Point B(0,0,0)B( 0,0,0) can't be used to find kk because we don't know if it is located on the plane.

    To prove that the plane is parallel to line L2L_{2}, use dot product where dot product of vector normal and parallel to the plane is equal to zero.

    Vector normal to the plane is 1,5,3\langle 1,-5,3\rangle, Vector parallel to the plane is 1,2,3\langle 1,2,3\rangle.

    Since 1,5,31,2,3=0\langle 1,-5,3\rangle \cdot \langle 1,2,3\rangle =0, thus the plane is parallel to line L2L_{2}.

  9. Find the Cartesian equation of plane contains the line L1:r1=a+tu=2,3,4+L_{1}: \boldsymbol{r}_{\mathbf{1}}=\boldsymbol{a}+t \boldsymbol{u}=\langle-2,3,4\rangle+ 1,2,1t\langle 1,2,-1\rangle t and line L2:r2=b+sv=3,4,0+1,2,1sL_{2}: \boldsymbol{r}_{2}=\boldsymbol{b}+s \boldsymbol{v}=\langle 3,4,0\rangle+\langle-1,-2,1\rangle s.

    Solution

    The plane consists of line L1L_{1} and L2L_{2}, therefore point A(2,3,4)A( -2,3,4) and B(3,4,0)B( 3,4,0) are located on the plane.

    Therefore, AB=OBOA=3,4,02,3,4=5,1,4\overrightarrow{AB} =\overrightarrow{OB} -\overrightarrow{OA} =\langle 3,4,0\rangle -\langle -2,3,4\rangle =\langle 5,1,-4\rangle is one of the line that is parallel to the plane. (Note that a plane is formed by infinite line in various direction, thus there is more than one line parallel to it)

    Since the plane contains line L1L_{1} and L2L_{2}, thus the plane is parallel to both of them. From the vector equation of line, the plane is parallel u=1,2,1\underset{\sim }{u} =\langle 1,2,-1\rangle and v=1,2,1\underset{\sim }{v} =\langle -1,-2,1\rangle respectively. Note that these two lines are parallel to each other. Thus, they lies in the same plane. Use either one of them to find the plane equation.

    Use cross product to find vector normal to the plane,

    AB×u=ijk514121=i(1+8)j(5+4)+k(101)=7,1,9\overrightarrow{AB} \times \underset{\sim }{u} =\begin{vmatrix} \underset{\sim }{i} & \underset{\sim }{j} & \underset{\sim }{k}\\ 5 & 1 & -4\\ 1 & 2 & -1 \end{vmatrix} =\underset{\sim }{i}( -1+8) -\underset{\sim }{j}( -5+4) +\underset{\sim }{k}( 10-1) =\langle 7,1,9\rangle

    Therefore, Cartesian equation is 7x+y+9z=k7x+y+9z=k.

    Substitute either A(2,3,4)A( -2,3,4) or B(3,4,0)B( 3,4,0) to get $kk,

    k=7(3)+3+9(4)=25k=7( -3) +3+9( 4) =25
    7x+y+9z=25\therefore 7x+y+9z=25
  10. Let a=1,2,3,b=2,1,1\underset{\sim}{a}=\langle 1,-2,-3\rangle, \underset{\sim}{b}=\langle 2,1,-1\rangle and c=1,3,2\underset{\sim}{c}=\langle 1,3,-2\rangle. Find

    i. ab(a×b)\underset{\sim}{a} \cdot \underset{\sim}{b}(\underset{\sim}{a} \times \underset{\sim}{b})

    Solution
    ab(a×b)=1,2,32,1,1(1,2,3×2,1,1)=(22+3)(ijk123211)=3[i(2+3)j(1+6)+k(1+4)]=3(5i5j+5k)=15i15j+15k\begin{aligned} \underset{\sim }{a} \cdot \underset{\sim }{b}\left(\underset{\sim }{a} \times \underset{\sim }{b}\right) & =\langle 1,-2,-3\rangle \cdot \langle 2,1,-1\rangle ( \langle 1,-2,-3\rangle \times \langle 2,1,-1)\\ & =( 2-2+3)\left(\begin{vmatrix} \underset{\sim }{i} & \underset{\sim }{j} & \underset{\sim }{k}\\ 1 & -2 & -3\\ 2 & 1 & -1 \end{vmatrix}\right)\\ & =3\left[\underset{\sim }{i}( 2+3) -\underset{\sim }{j}( -1+6) +\underset{\sim }{k}( 1+4)\right]\\ & =3\left( 5\underset{\sim }{i} -5\underset{\sim }{j} +5\underset{\sim }{k}\right)\\ & =15\underset{\sim }{i} -15\underset{\sim }{j} +15\underset{\sim }{k} \end{aligned}

    ii. (a+b)×c(\underset{\sim}{a}+\underset{\sim}{b}) \times \underset{\sim}{c}

    Solution
    a+b×c=(1,2,3+2,1,1)×1,3,2=(3,1,4)×1,3,2=ijk314132=14i+2j+10k\begin{aligned} \underset{\sim }{a} +\underset{\sim }{b} \times \underset{\sim }{c} & =( \langle 1,-2,-3\rangle +\langle 2,1,-1\rangle ) \times \langle 1,3,-2\rangle \\ & =( \langle 3,-1,-4\rangle ) \times \langle 1,3,-2\rangle \\ & =\begin{vmatrix} \underset{\sim }{i} & \underset{\sim }{j} & \underset{\sim }{k}\\ 3 & -1 & -4\\ 1 & 3 & -2 \end{vmatrix}\\ & =14\underset{\sim }{i} +2\underset{\sim }{j} +10\underset{\sim }{k} \end{aligned}
  11. Determine the shortest distance between the 3D skew lines where;

    La:ra=4i+2j6k+t(2ijk)Lb:rb=i3j3k+t(i2jk)\begin{aligned} &L_{a}: r_{a}=4 \boldsymbol{i}+2 \boldsymbol{j}-6 \boldsymbol{k}+t(2 \boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}) \\ &L_{b}: r_{b}=\boldsymbol{i}-3 \boldsymbol{j}-3 \boldsymbol{k}+t(\boldsymbol{i}-2 \boldsymbol{j}-\boldsymbol{k}) \end{aligned}
    Solution

    Shortest distance is given as: (aaab)ba×bbba×bb\left|\left(a_a-a_b\right) \cdot \frac{b_a \times b_b}{\left|b_a \times b_b\right|}\right|

    La:ra=4i+2j6k+t(2ijk)Lb:rb=i3j3k+t(i2jk)ba×bb=ijk211121=(12)i(2+1)j+(4+1)k=i+j3kba×bb=(1)2+12+(3)2=11aaab=(41)i+(2+3)j+(6+3)k=3i+5j3k\begin{gathered} L_a: r_a=4 \boldsymbol{i}+2 \boldsymbol{j}-6 \boldsymbol{k}+t(2 \boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}) \\ L_b: r_b=\boldsymbol{i}-3 \boldsymbol{j}-3 \boldsymbol{k}+t(\boldsymbol{i}-2 \boldsymbol{j}-\boldsymbol{k}) \\ b_a \times b_b=\left|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 2 & -1 & -1 \\ 1 & -2 & -1 \end{array}\right|=(1-2) \boldsymbol{i}-(-2+1) \boldsymbol{j}+(-4+1) \boldsymbol{k}=-\boldsymbol{i}+\boldsymbol{j}-3 \boldsymbol{k} \\ \left|b_a \times b_b\right|=\sqrt{(-1)^2+1^2+(-3)^2}=\sqrt{11} \\ a_a-a_b=(4-1) \boldsymbol{i}+(2+3) \boldsymbol{j}+(-6+3) \boldsymbol{k}=3 \boldsymbol{i}+5 \boldsymbol{j}-3 \boldsymbol{k} \end{gathered}

    Hence, the shortest distance is:

    111315133=1113+5+9=1111\frac{1}{\sqrt{11}}\left|\begin{array}{cc} 3 & -1 \\ 5 & 1 \\ -3 & -3 \end{array}\right|=\frac{1}{\sqrt{11}}|-3+5+9|=\frac{11}{\sqrt{11}}
Your Help needed

This website has received 3000 view in the first two weeks! However, this project repository did not receive any star! Just simply head over to this website's repository to give it a star! Every tutorial takes me around two hours to compile, proof-read and styling this website! Your simple action would encourage me a lot! Thank you! You could Buy me a coffee too!