Skip to main content

Tutorial 3

Tutorial 3: Vector Algebra I

Tutorial QuestionTutorial Solution
  1. Sketch the two points P(3,1,5)P(3,-1,5) and Q(2,1,1)Q(2,1,-1) in three-dimensional space and find the distance between the two points.

    Solution
    Figure for Answer 1

    Distance between the two points:

    PQ=(x2x1)2+(y2y1)2+(z2z1)2=(23)2+(1(1))2+(15)2=41\begin{aligned} |\overrightarrow{P Q}|&=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2+\left(z_2-z_1\right)^2}\\ &=\sqrt{(2-3)^2+(1-(-1))^2+(-1-5)^2}\\ &=\sqrt{41} \end{aligned}
  2. For the position vector a=2,4\underset{\sim}{a}=\langle 2,4\rangle, compute 3a,12a3 \underset{\sim}{a}, \frac{1}{2} \underset{\sim}{a}, and 2a-\underset{\sim}{2} a. Sketch all four vectors on the same axis system. Discuss the effects of scalar multiplication on the magnitude and direction of the original vector.

    Solution
    Figure for Answer 2
    • The scalar multiplication affects the magnitude of vectors if the scalar is a negative value. For example, 2a-2\underset{\sim }{a} switch the direction in exactly the opposite direction.
    • The scalar multiplication affects the magnitude of vectors if the scalar is not equal to 1.
    • When scalar >1> 1, the length of the vector is stretched. (magnitude increased)
    • When scalar <1< 1, the length of the vector is shrinked. (magnitude decteased)
  3. Two vectors are given as OP=i+3j7k\overrightarrow{O P}=\underset{\sim}{i}+3 \underset{\sim}{j}-7 \underset{\sim}{k} and OQ=5i2j+4k\overrightarrow{O Q}=\underset{\sim}{5} i-2 \underset{\sim}{j}+4 \underset{\sim}{k}

    i. Find the unit vector in the direction of PQ\overrightarrow{P Q}

    Solution
    PQ=OQOP=5,2,41,3,7=4,5,11\begin{aligned} \overrightarrow{PQ} & =\overrightarrow{OQ} -\overrightarrow{OP}\\ & =\langle 5,-2,4\rangle -\langle 1,3,-7\rangle \\ & =\langle 4,-5,11\rangle \end{aligned}
    PQ=PQPQ=4,5,11(4)2+(5)2+(11)2=1924,5,11\begin{aligned} \overrightarrow{PQ} & =\frac{\overrightarrow{PQ}}{| \overrightarrow{PQ}| }\\ & =\frac{\langle 4,-5,11\rangle }{\sqrt{( 4)^{2} +( -5)^{2} +( 11)^{2}}}\\ & =\frac{1}{9\sqrt{2}} \langle 4,-5,11\rangle \end{aligned}

    ii. Find the direction cosines of PQ\overrightarrow{P Q}

    Solution

    Comparing each component, we obtain:

    • For component i\underset{\sim }{i}, cosα=492\cos \alpha =\frac{4}{9\sqrt{2}}
    • For component j\underset{\sim }{j}, cosβ=592\cos \beta =\frac{-5}{9\sqrt{2}}
    • For component k\underset{\sim }{k}, cosγ=1192\cos \gamma =\frac{11}{9\sqrt{2}}

    iii. Find the vector with magnitude of 5 in the direction of QP\overrightarrow{Q P} in polar form

    Solution
    cosα=492 α=71.68 cosβ=592 β=113.13cosγ=1192 γ=30.20\begin{aligned} \cos \alpha =\frac{4}{9\sqrt{2}} & \Longrightarrow \ \alpha =71.68^\circ \\ \ \cos \beta =\frac{-5}{9\sqrt{2}} & \Longrightarrow \ \beta =113.13^\circ \\ \cos \gamma =\frac{11}{9\sqrt{2}} & \Longrightarrow \ \gamma =30.20^\circ \end{aligned}

    Direction PQ\overrightarrow{PQ} is in the direction of its unit vector, cos(71.68),cos(113.13),cos(30.20)\langle \cos( 71.68^\circ ) ,\cos( 113.13^\circ ) ,\cos( 30.20^\circ ) \rangle.

    Direction QP\overrightarrow{QP} is in the direction of its unit vector,

    cos(18071.68),cos(180113.13),cos(18030.20)=cos(108.32),cos(66.87),cos(149.80)\begin{aligned} &\langle \cos( 180-71.68^\circ ) ,\cos( 180-113.13^\circ ) ,\cos( 180-30.20^\circ ) \rangle \\ &=\langle \cos( 108.32^\circ ) ,\cos( 66.87^\circ ) ,\cos( 149.80^\circ ) \rangle \end{aligned}

    Vector of magintude 5 in the direction QP\overrightarrow{QP} is 5cos(108.32),cos(66.87),cos(149.80)5\langle \cos( 108.32^\circ ) ,\cos( 66.87^\circ ) ,\cos( 149.80^\circ ) \rangle.

  4. Two points are given as A(1,2)A(1,2) and B(3,4)B(3,4).

    i. Find the vector equation of line LL that is passing through point AA and BB.

    Solution

    Direction of vector is parallel with AB=OBOA=3,41,2=2,2\overrightarrow{AB} =\overrightarrow{OB} -\overrightarrow{OA} =\langle 3,4\rangle -\langle 1,2\rangle =\langle 2,2\rangle

    Vector equation of line LL is r=a+tv=1,2+t2,2\underset{\sim }{r} =\underset{\sim }{a} +t\underset{\sim }{v} =\langle 1,2\rangle +t\langle 2,2\rangle

    ii. Sketch the line for t=0:1:5t=0: 1: 5 and indicate its direction and initial point.

    Solution
    ttr\underset{\sim }{r}
    01,2\langle 1,2\rangle
    13,4\langle 3,4\rangle
    25,6\langle 5,6\rangle
    37,8\langle 7,8\rangle
    49,10\langle 9,10\rangle
    511,12\langle 11,12\rangle
    Figure for Answer 4b
  5. If a unit vector a\vec{a} makes an angle of π/3\pi / 3 with i,π/4i, \pi / 4 with jj and acute angle θ\theta with kk, find θ\theta and the components of a\vec{a}.

    Solution

    Let α,β,γ\alpha ,\beta ,\gamma to represent angles of a\vec{a}, and a=a1i+a2j+a3k\vec{a} =a_{1} i+a_{2} j+a_{3} k.

    cosα=a1a1cos(π3)=a11a1=12\begin{aligned} \cos \alpha & =\frac{a_{1}}{| a_{1}| }\\ \cos\left(\frac{\pi }{3}\right) & =\frac{a_{1}}{1}\\ a_{1} & =\frac{1}{2} \end{aligned}
    cosβ=a2a2cos(π4)=a11a1=12\begin{aligned} \cos \beta & =\frac{a_{2}}{| a_{2}| }\\ \cos\left(\frac{\pi }{4}\right) & =\frac{a_{1}}{1}\\ a_{1} & =\frac{1}{\sqrt{2}} \end{aligned}
    cosγ=a3a3cosθ=a31a3=cosθ\begin{aligned} \cos \gamma & =\frac{a_{3}}{| a_{3}| }\\ \cos \theta & =\frac{a_{3}}{1}\\ a_{3} & =\cos \theta \end{aligned}

     a=12i+12j+cosθk\therefore \ \vec{a} =\frac{1}{2} i+\frac{1}{\sqrt{2}} j+\cos \theta k

    a=(12)2+(12)2+(cosθ)21=14+12+cos2θ1=34+cos2θcos2θ=14cosθ=±12θ=60 or 120\begin{aligned} | \vec{a}| & =\sqrt{\left(\frac{1}{2}\right)^{2} +\left(\frac{1}{\sqrt{2}}\right)^{2} +(\cos \theta )^{2}}\\ 1 & =\sqrt{\frac{1}{4} +\frac{1}{2} +\cos^{2} \theta }\\ 1 & =\frac{3}{4} +\cos^{2} \theta \\ \cos^{2} \theta & =\frac{1}{4}\\ \cos \theta & =\pm \frac{1}{2}\\ \theta & =60^\circ \ or\ 120^\circ \end{aligned}

     a=12i+12j+12k ora=12i+12j12k\therefore \ \vec{a} =\frac{1}{2} i+\frac{1}{\sqrt{2}} j+\frac{1}{2} k\ \quad or\quad \vec{a} =\frac{1}{2} i+\frac{1}{\sqrt{2}} j-\frac{1}{2} k

  6. If a\vec{a} is a unit vector and (xa)(x+a)=8(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8, find x|\vec{x}|.

    Solution

    Since a\vec{a} is a unit vector, a=1\vert \vec{a}\vert =1.

    (xa)(x+a)=8xx+xaaxaa=8x2a2=8x21=8x2=9x=3\begin{aligned} (\vec{x} -\vec{a}) \cdot (\vec{x} +\vec{a}) & =8\\ \vec{x} \cdot \vec{x} +\vec{x} \cdot \vec{a} -\vec{a} \cdot \vec{x} -\vec{a} \cdot \vec{a} & =8\\ | \vec{x}| ^{2} -| \vec{a}| ^{2} & =8\\ | \vec{x}| ^{2} -1 & =8\\ | \vec{x}| ^{2} & =9\\ | \vec{x}| & =3 \end{aligned}

    Note that magnitude of vector is non-negative.

  7. Find the gradient for f=(2x2+y)/(x2y2)f=\left(2 x^{2}+y\right) /\left(x^{2}-y^{2}\right).

    Solution
    ddx(f)=(x2y2)(4x)(2x2+y)(2x)(x2y2)2\frac{d}{d x}(f)=\frac{\left(x^2-y^2\right)(4 x)-\left(2 x^2+y\right)(2 x)}{\left(x^2-y^2\right)^2}
    ddx(f)=2xy(2y1)(x2y2)2\frac{d}{d x}(f)=\frac{2 x y(-2 y-1)}{\left(x^2-y^2\right)^2}

    and

    ddy(f)=(x2y2)(1)(2x2+y)(2y)(x2y2)2\frac{d}{d y}(f)=\frac{\left(x^2-y^2\right)(1)-\left(2 x^2+y\right)(-2 y)}{\left(x^2-y^2\right)^2}
    ddy(f)=x2+4x2y+y2(x2y2)2\frac{d}{d y}(f)=\frac{x^2+4 x^2 y+y^2}{\left(x^2-y^2\right)^2}

    Hence

    f=2xy(2y1)(x2y2)2i+x2+4x2y+y2(x2y2)2j\nabla f=\frac{2 x y(-2 y-1)}{\left(x^2-y^2\right)^2} \boldsymbol{i}+\frac{x^2+4 x^2 y+y^2}{\left(x^2-y^2\right)^2} \boldsymbol{j}
  8. Calculate the divergence of the following vector fields of F(x,y)F(x, y) and G(x,y)G(x, y);

    a. F=y3i+xyjF=y^{3} \boldsymbol{i}+x y \boldsymbol{j}

    Solution
    F(x,y)=F1x+F2y=xy3+yxy=0+x=x\begin{aligned} \nabla \cdot \boldsymbol{F}(x, y) &=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y} \\ &=\frac{\partial}{\partial x} y^3+\frac{\partial}{\partial y} x y=0+x=x \end{aligned}

    b. G=4yx2i+sin(y)j+3kG=\frac{4 y}{x^{2}} \boldsymbol{i}+\sin (y) \boldsymbol{j}+3 \boldsymbol{k}

    Solution
    G=G1x+G2y+G3z=x(4yx2)+ysin(y)+z3=4y×xx2+cos(y)=4y×(2)x21+cos(y)=8yx3+cos(y)=8yx3+cos(y)\begin{aligned} \nabla \cdot \boldsymbol{G} &=\frac{\partial G_1}{\partial x}+\frac{\partial G_2}{\partial y}+\frac{\partial G_3}{\partial z} \\ &=\frac{\partial}{\partial x}\left(\frac{4 y}{x^2}\right)+\frac{\partial}{\partial y} \sin (y)+\frac{\partial}{\partial z} 3 \\ &=4 y \times \frac{\partial}{\partial x} x^{-2}+\cos (y)=4 y \times(-2) x^{-2-1}+\cos (y) \\ &=-8 y x^{-3}+\cos (y)=-\frac{8 y}{x^3}+\cos (y) \end{aligned}

    c. G=exi+ln(xy)j+exyzkG=e^{x} \boldsymbol{i}+\ln (x y) \boldsymbol{j}+e^{x y z} \boldsymbol{k}

    Solution
    G=G1x+G2y+G3z=xex+yln(xy)+zexyz=ex+y(ln(x)+ln(y))+exyz×z(xyz)=ex+1y+xyexyz\begin{aligned} \nabla \cdot \boldsymbol{G} &=\frac{\partial G_1}{\partial x}+\frac{\partial G_2}{\partial y}+\frac{\partial G_3}{\partial z} \\ &=\frac{\partial}{\partial x} \mathrm{e}^x+\frac{\partial}{\partial y} \ln (x y)+\frac{\partial}{\partial z} \mathrm{e}^{x y z} \\ &=\mathrm{e}^x+\frac{\partial}{\partial y}(\ln (x)+\ln (y))+\mathrm{e}^{x y z} \times \frac{\partial}{\partial z}(x y z) \\ &=\mathrm{e}^x+\frac{1}{y}+x y \mathrm{e}^{x y z} \end{aligned}
  9. Calculate the curl of the following vector fields of F(x,y,z)F(x, y, z);

    a. F=3x2i+2zjxkF=3 x^{2} \boldsymbol{i}+2 z \boldsymbol{j}-x \boldsymbol{k}

    Solution
    ×F=ijkxyz3x22zx=((x)y(2z)z)i((x)x(3x2)z)j+((2z)x(3x2)y)k=(02)i(10)j+(00)k=2i+j\begin{aligned} \nabla \times \boldsymbol{F} &=\left|\begin{array}{ccc}i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3 x^2 & 2 z & -x\end{array}\right| \\ &=\left(\frac{\partial(-x)}{\partial y}-\frac{\partial(2 z)}{\partial z}\right) i-\left(\frac{\partial(-x)}{\partial x}-\frac{\partial\left(3 x^2\right)}{\partial z}\right) j +\left(\frac{\partial(2 z)}{\partial x}-\frac{\partial\left(3 x^2\right)}{\partial y}\right) k \\ &=(0-2) i-(-1-0) j+(0-0) k \\ &=-2 i+j \end{aligned}

    b. F=y3i+xyjzkF=y^{3} \boldsymbol{i}+x y \boldsymbol{j}-z \boldsymbol{k}

    Solution
    ×F=(F3yF2z)i(F3xF1z)j+(F2xF1y)k=((z)y(xy)z)i((z)x(y3)z)j+((xy)x(y3)y)k=0i0j+(y3y2)k=(y3y2)k\begin{aligned} \nabla \times \boldsymbol{F}=&\left(\frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z}\right) i-\left(\frac{\partial F_3}{\partial x}-\frac{\partial F_1}{\partial z}\right) j+\left(\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right) \boldsymbol{k} \\ =&\left(\frac{\partial(-z)}{\partial y}-\frac{\partial(x y)}{\partial z}\right) i-\left(\frac{\partial(-z)}{\partial x}-\frac{\partial\left(y^3\right)}{\partial z}\right) j +\left(\frac{\partial(x y)}{\partial x}-\frac{\partial\left(y^3\right)}{\partial y}\right) \boldsymbol{k} \\ =& 0 i-0 j+\left(y-3 y^2\right) \boldsymbol{k}\\ =&\left(y-3 y^2\right) \boldsymbol{k} \end{aligned}

    i.e., the curl vector is in the kk direction.

    с. F=(1+y+z2)i+(exyz)j(xyz)kF=\left(1+y+z^{2}\right) \boldsymbol{i}+\left(e^{x y z}\right) \boldsymbol{j}-(x y z) \boldsymbol{k}

    Solution
    curl(F)=×F=(y(xyz)z(exyz))i+(z(1+y+z2)x(xyz))j+(x(exyz)y(1+y+z2))k\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}=\left(\frac{\partial}{\partial y}(x y z)-\frac{\partial}{\partial z}\left(e^{x y z}\right)\right) \vec{i}+\left(\frac{\partial}{\partial z}\left(1+y+z^2\right)-\frac{\partial}{\partial x}(x y z)\right) \vec{j}+\left(\frac{\partial}{\partial x}\left(e^{x y z}\right)-\frac{\partial}{\partial y}\left(1+y+z^2\right)\right) \vec{k}
    curl(F)=(xzxyexyz)i+(2zyz)k+(yzexyz1)k\operatorname{curl}(\mathbf{F})=\left(x z-x y e^{x y z}\right) \vec{i}+(2 z-y z) \vec{k}+\left(y z e^{x y z}-1\right) \vec{k}
Your Help needed

This website has received 3000 view in the first two weeks! However, this project repository did not receive any star! Just simply head over to this website's repository to give it a star! Every tutorial takes me around two hours to compile, proof-read and styling this website! Your simple action would encourage me a lot! Thank you! You could Buy me a coffee too!