Skip to main content

Tutorial 12

Tutorial 12: Line Integrals

Tutorial QuestionTutorial Solution
  1. If A=(3x2+6y)i^14yzj^+20xz2k^A=\left(3 x^{2}+6 y\right) \hat{i}-14 y z \hat{j}+20 x z^{2} \hat{k}, evaluate CAdr\int_{C} A \bullet d r from (0,0,0)(0,0,0) to (1,1,1)(1,1,1) along the following paths C\mathrm{C} :

    a. x=t,y=t2,z=t3x=t, y=t^{2}, z=t^{3}.

    Solution
    r(t)=x(t)i^+y(t)j^+z(t)k^=ti^+t2j^+t3k^\begin{aligned} r(t)&=x(t)\hat{i}+y(t)\hat{j}+z(t)\hat{k}\\ &=t\hat{i}+t^2\hat{j}+t^3\hat{k} \end{aligned}
    A(r(t))=(3t2+6t2)i^14(t2)(t3)j^+20(t)(t3)2k^=9t2i^14t5j^+20t7k^\begin{aligned} A(r(t))&=(3t^2+6t^2)\hat{i}-14(t^2)(t^3)\hat{j}+20(t)(t^3)^2\hat{k}\\ &=9t^2\hat{i}-14t^5\hat{j}+20t^7\hat{k} \end{aligned}
    drdt=i^+2tj^+3t2k^\frac{dr}{dt}=\hat{i}+2t\hat{j}+3t^2\hat{k}
    CFdr=01F(r(t))drdtdt=01(9t2i^14t5j^+20t7k^)(i^+2tj^+3t2k^)dt=019t228t6+60t9dt=3t34t7+6t1001=34+6=5\begin{aligned} \int_C F\cdot dr &=\int_0^1 F(r(t))\cdot \frac{dr}{dt}\cdot dt\\ &=\int_0^1(9t^2\hat{i}-14t^5\hat{j}+20t^7\hat{k})(\hat{i}+2t\hat{j}+3t^2\hat{k})dt\\ &=\int_0^1 9t^2-28t^6+60t^9 dt\\ &=\left. 3t^3-4t^7+6t^10 \right|_0^1\\ &=3-4+6\\ &=5 \end{aligned}

    b. The straight line from (0,0,0)(0,0,0) to (1,0,0)(1,0,0) then to (1,1,0)(1,1,0), and then to (1,1,1)(1,1,1).

    Solution

    From (0,0,0)(0,0,0) to (1,0,0)(1,0,0),

    r=(0,0,0)+t(1,0,0)=ti^+0j^+0k^x=t,y=0,z=0r=(0,0,0)+t(1,0,0)=t\hat{i}+0\hat{j}+0\hat{k}\\\Rightarrow x=t,y=0,z=0
    drdt=1i^\frac{dr}{dt}=1\hat{i}
    01F(r(t))drdtdt=01(3t2i^)(i^)dt=t301=1\begin{aligned} \int_0^1 F(r(t))\cdot\frac{dr}{dt}\cdot dt &=\int_0^1 (3t^2 \hat{i})\cdot(\hat{i})dt\\ &=\left. t^3\right|_0^1=1 \end{aligned}

    From (1,0,0)(1,0,0) to (1,1,0)(1,1,0),

    r=(1,0,0)+t(0,1,0)=i^+tj^+0k^x=1,y=t,z=0r=(1,0,0)+t(0,1,0)=\hat{i}+t\hat{j}+0\hat{k}\\\Rightarrow x=1,y=t,z=0
    drdt=1j^\frac{dr}{dt}=1\hat{j}
    F(r,t)=3(1)+6ti^14(t)(0)j^+20(1)(0)k^=3+6ti^F(r,t)=3(1)+6t\hat{i}-14(t)(0)\hat{j}+20(1)(0)\hat{k}=3+6t\hat{i}
    01F(r(t))drdtdt=01(3+6ti^)(j^)dt=0\begin{aligned} \int_0^1 F(r(t))\cdot\frac{dr}{dt}\cdot dt &=\int_0^1 (3+6t \hat{i})\cdot(\hat{j})dt\\ &=0 \end{aligned}

    From (1,1,0)(1,1,0) to (1,1,1)(1,1,1),

    r=(1,1,0)+t(0,0,1)=i^+j^+tk^x=1,y=1,z=tr=(1,1,0)+t(0,0,1)=\hat{i}+\hat{j}+t\hat{k}\\\Rightarrow x=1,y=1,z=t
    drdt=1k^\frac{dr}{dt}=1\hat{k}
    F(r,t)=(3(1)+6(1))i^14(1)(t)j^+20(1)(t)2k^=9i^14tj^+20t2k^\begin{aligned} F(r,t)&=(3(1)+6(1))\hat{i}-14(1)(t)\hat{j}+20(1)(t)^2\hat{k}\\ &=9\hat{i}-14t\hat{j}+20t^2\hat{k} \end{aligned}
    01F(r(t))drdtdt=01(9i^14tj^+20t2k^)(k^)dt=0120t2dt=203t301=203\begin{aligned} \int_0^1 F(r(t))\cdot\frac{dr}{dt}\cdot dt &=\int_0^1 (9\hat{i}-14t\hat{j}+20t^2\hat{k})\cdot(\hat{k})dt\\ &=\int_0^1 20t^2 dt\\ &=\left.\frac{20}{3}t^3\right|_0^1=\frac{20}{3} \end{aligned}

    Total Line Integral=1+0+203=233\therefore \text{Total Line Integral}=1+0+\frac{20}{3}=\frac{23}{3}

    c. The straight line joining (0,0,0)(0,0,0) and (1,1,1)(1,1,1).

    Solution
    r=ti^+tj^+tk^x=t,y=t,z=tr=t\hat{i}+t\hat{j}+t\hat{k}\\\Rightarrow x=t,y=t,z=t
    drdt=i^+j^+k^\frac{dr}{dt}=\hat{i}+\hat{j}+\hat{k}
    01[(3t2+6t)i^14(t)(t)j^+20(t)(t)2k^][i^+j^+k^]=01(3t2+6t14t2+20t3)dt=01(6t11t2+20t3)dt=3t2113t3+5t401=133\begin{aligned} &\int_0^1\left[(3t^2+6t)\hat{i}-14(t)(t)\hat{j}+20(t)(t)^2\hat{k}\right]\cdot\left[\hat{i}+\hat{j}+\hat{k}\right]\\ &=\int_0^1(3t^2+6t-14t^2+20t^3)dt\\&=\int_0^1(6t-11t^2+20t^3)dt\\ &=\left. 3t^2-\frac{11}{3}t^3+5t^4\right|_0^1\\ &=\frac{13}{3} \end{aligned}
  1. Find the work done in moving a particle in a force field given by F=3xyi^5zj^+10xk^F=3 x y \hat{i}-5 z \hat{j}+10 x \hat{k} along the curve x=t2+1,y=2t2,z=t3x=t^{2}+1, y=2 t^{2}, z=t^{3} from t=1t=1 to t=2t=2.

    Solution
    r(t)=x(t)i^+y(t)j^+z(t)k^=(t2+1)i^+2t2j^+t3k^r(t)=x(t)\hat{i}+y(t)\hat{j}+z(t)\hat{k}=(t^2+1)\hat{i}+2t^2\hat{j}+t^3\hat{k}
    drdt=2ti^+4tj^+3t2k^\frac{dr}{dt}=2t\hat{i}+4t\hat{j}+3t^2\hat{k}
    F(r(t))=3(t2+1)(2t2)i^5(t3)j^+10(t2+1)k^F(r(t))=3(t^2+1)(2t^2)\hat{i}-5(t^3)\hat{j}+10(t^2+1)\hat{k}
    CFdr=12(6t4+6t2)i^5t3j^+(10t2+10)k^(2ti^+4tj^+3t2k^)dt=12(12t5+12t320t4+30t4+30t2)dt=2t6+3t44t5+6t5+10t313=2t6+2t5+3t4+10t312=(128+64+48+80)(2+2+3+10)=32017=303\begin{aligned} \int_C F\cdot dr&=\int_1^2 (6t^4+6t^2)\hat{i}-5t^3\hat{j}+(10t^2+10)\hat{k} \cdot (2t\hat{i}+4t\hat{j}+3t^2\hat{k}) dt\\ &=\int_1^2 (12t^5+12t^3-20t^4+30t^4+30t^2)dt\\ &=\left. 2t^6+3t^4-4t^5+6t^5+10t^3\right|_1^3\\ &=\left.2t^6+2t^5+3t^4+10t^3\right|_1^2\\ &=(128+64+48+80)-(2+2+3+10)\\ &=320-17=303 \end{aligned}
  2. Determine the work done in moving a particle counterclockwise once around a circle C\mathrm{C} in the xyx y-plane, if the circle has center at the origin and radius of 3 and if those field is given by F=(2xy+z)i^+(x+yz2)j^+(3x2y+4z)k^F=(2 x-y+z) \hat{i}+\left(x+y-z^{2}\right) \hat{j}+(3 x-2 y+4 z) \hat{k}

    Solution
    Figure for Solution 3
    r=xi^+yj^=3costi^+3sintj^r=x\hat{i}+y\hat{j}=3\cos{t}\hat{i}+3\sin{t}\hat{j}

    In the plane z=0z=0,

    F=(2xy)i^+(x+y)j^+(3x2y)k^\mathbf{F}=(2x-y)\hat{i}+(x+y)\hat{j}+(3x-2y)\hat{k}
    dr=dxi^+dyj^dr=dx\hat{i}+dy\hat{j}

    The work done is,

    CFdt=C[(2xy)i^+(x+y)j^+(3x2y)k^][dxi^+dyj^]=C(2xy)dx+(x+y)dy\begin{aligned} \int_C \mathbf{F}\cdot dt&=\int_C \left[(2x-y)\hat{i}+(x+y)\hat{j}+(3x-2y)\hat{k}\right]\cdot [dx\hat{i}+dy\hat{j}]\\ &=\int_C (2x-y)dx+(x+y)dy \end{aligned}

    Parametric equation of the circle: x=3costx=3\cos{t}, y=3sinty=3\sin{t}, where tt varies from 00 to 2π2\pi. \Rightarrow dx=3sintdt,dy=3costdtdx=-3\sin t dt, dy=3\cos t dt

    The line integral,

    t=02π[2(3cost3sint)(3sint)dt]+[3cost+3sint][3costdt]=02π18sintcost+9sin2t+9cos2t+9sintcostdt=02π(99sintcost)dt=9t92sin2t02π=18π\begin{aligned} &\int_{t=0}^{2\pi} \left[2(3\cos{t}-3\sin{t})(-3\sin{t})dt\right]+[3\cos{t}+3\sin{t}][3\cos{t}dt]\\ &=\int_0^{2\pi} -18\sin t\cos t+9\sin^2 t+9\cos^2 t+9\sin t\cos t dt\\ &=\int_0^{2\pi} (9-9\sin{t}\cos{t})dt \\ &=\left. 9t-\frac{9}{2}\sin^2{t}\right|_0^{2\pi}\\ &=18\pi \end{aligned}

    Note: We choose counterclockwise direction, which is known as positive direction. If traversing from counterclockwise (negative) direction, the value of integral would be 18π-18\pi.

  3. Find the line integral for C(xy+y2)dx+x2dy\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y where CC is the closed curve of the region bounded by y=xy=x and y=x2y=x^{2} in the positive direction in traversing C. y=xy=x and y=x2y=x^{2} intersect at (0,0)(0,0) and (1,1)(1,1).

    Solution
    Figure for Solution 4

    Along y=x2y=x^2, where dy=2xdxdy=2xdx the line integral equals

    01((x)(x2)+(x2)2)dx+(x2)(2x)dx=01(3x3+x4)dx=1920\int_0^1\left((x)(x^2)+(x^2)^2\right)dx+(x^2)(2x)dx=\int_0^1(3x^3+x^4)dx=\frac{19}{20}

    Along y=xy=x from (1,1)(1,1) to (0,0)(0,0), the line integral equals

    01((x)(x)+(x)2)dx+x2dx=013x2dx=1\int_0^1\left((x)(x)+(x)^2\right)dx+x^2dx=\int_0^13x^2dx=1

    L.H.S = The required line integral=19201=120\displaystyle\text{The required line integral}=\frac{19}{20}-1=-\frac{1}{20}

    R(NxMy)dxdy=R[x(x2)y(xy+y2)]dxdy=R(x2y)dxdy=x=01y=x2x(x2y)dydx=01[x2x(x2y)dy]dx=01(xyy2)x2xdx=01[(x2x2)(x3x4)]dx=01(x4x3)dx=x55x4401=1514=120\begin{aligned} \iint_R\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)dxdy&=\iint_R\left[\frac{\partial}{\partial x}(x^2)-\frac{\partial}{\partial y}(xy+y^2)\right]dxdy\\ &=\iint_R(x-2y)dxdy\\ &=\int_{x=0}^1\int_{y=x^2}^{x}(x-2y)dydx\\ &=\int_0^1\left[\int_{x^2}^x(x-2y)dy\right]dx\\ &=\int_0^1\left.(xy-y^2)\right|_{x^2}^xdx\\ &=\int_{0}^1\left[(x^2-x^2)-(x^3-x^4)\right]dx\\ &=\int_{0}^1\left(x^4-x^3\right)dx\\ &=\left.\frac{x^5}{5}-\frac{x^4}{4}\right|_0^1\\ &=\frac{1}{5}-\frac{1}{4}=-\frac{1}{20}\\ \end{aligned}

    L.H.S = R.H.S = 120\displaystyle-\frac{1}{20}.

  4. Evaluate C(ysinx)dx+cosxdy\oint_{C}(y-\sin x) d x+\cos x d y where CC is the triangle of the figure below.

    Figure for Question 5
    Solution

    M=ysinxM=y-\sin x, N=cosxN=\cos x, Nx=sinx\displaystyle\frac{\partial N}{\partial x}=-\sin x, My=1\displaystyle\frac{\partial M}{\partial y}=1,

    CMdx+Ndy=R(NxMy)dxdy=R(sinx1)dydx=x=0π2[y=02xπ(sinx1)dy]dx=x=0π2(ysinxy)02xπdx=0π2(2xπsinx2xπ)dx=2π(xcosx+sinx)x2π0π2=2ππ4\begin{aligned}\oint_C Mdx+Ndy &=\iint_R \left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)dxdy\\ &=\iint_R(-\sin x-1)dydx\\ &=\int_{x=0}^{\frac{\pi}{2}}\left[\int_{y=0}^{\frac{2x}{\pi}} (-\sin x-1) dy \right] dx\\ &=\int_{x=0}^{\frac{\pi}{2}}\left.(-y\sin x-y)\right|_0^{\frac{2x}{\pi}}dx\\ &=\int_0^{\frac{\pi}{2}}\left(-\frac{2x}{\pi}\sin x-\frac{2x}{\pi}\right)dx\\ &=\left.-\frac{2}{\pi}(-x\cos x+\sin x)-\frac{x^2}{\pi}\right|_0^{\frac{\pi}{2}}\\ &=-\frac{2}{\pi}-\frac{\pi}{4} \end{aligned}

    Note: Although there exist lines parallel to the coordinate axes (coincident with the coordinate axes in this case) which meet CC in an infinite number of points, Green’s theorem in the plane still holds. In general the theorem is valid when CC is composed of a finite number of straight line segments.

  5. Calculate Cx2ydx+xy2dy\oint_{C}-x^{2} y d x+x y^{2} d y where CC is the circle of radius 2 centered on the origin.

    Solution
    CMdx+Ndy=RNxMydA\oint_CMdx+Ndy=\iint_RN_x-M_ydA

    We let M=x2yM=-x^2y and N=xy2N=xy^2 to get

    Cx2ydx+xy2dy=Ry2(x2)dA=Rx2+y2dA=02π02r2rdrdθ=02πr4402dθ=02π4dθ=4θ02π=8π\begin{aligned}\oint_C -x^2ydx+xy^2dy&=\iint_Ry^2-(-x^2)dA\\ &=\iint_Rx^2+y^2dA\\&=\int_0^{2\pi}\int_0^2 r^2r dr d\theta\\ &=\int_0^{2\pi}\left. \frac{r^4}{4}\right|_0^2d\theta\\ &=\int_0^{2\pi}4d\theta\\ &=\left.4\theta\right|_0^{2\pi}=8\pi \end{aligned}
  6. Compute the line integral of F(x,y)=x3,4x\boldsymbol{F}(x, y)=\left\langle x^{3}, 4 x\right\rangle along the path CC shown below against a grid of unit-sized squares.

    Figure for Question 7
    Solution

    Let LL be the line segment going from BB to AA. Then, we can now apply Green’s theorem to combination of CC and LL. Let DD be the region bounded by these two paths. Then, by Green’s theorem, since we are oriented correctly,

    DFdr=DQxPydA=Dx(4x)y(x3)dA=D4dA=4Area(A)=16\begin{aligned} \int_{\partial D}\mathbf{F}\cdot d\mathbf{r}&=\iint_D \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}dA\\ &=\iint_D\frac{\partial}{\partial x}(4x)-\frac{\partial}{\partial y}(x^3)dA\\ &=\iint_D4dA\\ &=4\cdot\text{Area}(A)\\ &=16 \end{aligned}

    because the area of the region is made of exactly 4 unit squares. The boundary of DD is CC and LL:

    DFdr=CFdr+LFdr=16\int_{\partial D}\mathbf{F}\cdot d\mathbf{r}=\int_C\mathbf{F}\cdot d\mathbf{r}+\int_L\mathbf{F}\cdot d\mathbf{r}=16

    The line integral along LL is easier: parametrizing LL by r(t)=(1,t)\mathbf{r}(t)=(-1,t) for 1t0-1\leq t\leq 0, we get

    LFdr=10(1,4)(0,1)dt=104dt=4\int_{\partial L}\mathbf{F}\cdot d\mathbf{r}=\int_{-1}^0(-1,-4)\cdot (0,1)dt=\int_{-1}^0-4dt=-4

    Putting it together,

    CFdr=16LFdr=16(4)=20\int_C \mathbf{F}\cdot d\mathbf{r}=16-\int_L\mathbf{F}\cdot d\mathbf{r}=16-(-4)=20
  7. A particle starts at (2,0)(-2,0) and moves along the xx-axis to (2,0)(2,0). Then it moves along the upper part of the circle x2+y2=4x^{2}+y^{2}=4 and back to (2,0)(-2,0). Compute the work done on this particle by the force field F(x,y)=x,x3+3xy2\boldsymbol{F}(x, y)=\left\langle x, x^{3}+3 x y^{2}\right\rangle.

    Solution

    Let F(x,y)=P(x,y)i+Q(x,y)j\mathbf{F}(x,y)=P(x,y)\mathbf{i}+Q(x,y)\mathbf{j} with P(x,y)=sin(x3)P(x,y)=\sin(x^3) and Q(x,y)=2yex2Q(x,y)=2ye^{x^2}.

    By Green’s theorem,

    CPdx+Qdy=D(QxPy)dxdy=020y4xyex2dxdy=022y(ey21)dy=e45\begin{aligned} \int_C Pdx+Qdy&=\iint_D \left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy\\ &=\int_0^2\int_0^y4xye^{x^2}dxdy\\ &=\int_0^2 2y\left(e^{y^2}-1\right)dy\\ &=e^4-5 \end{aligned}
  8. Let F(x,y)=sinx,cosy\mathbf{F}(x, y)=\langle\sin x, \cos y\rangle and let CC be the curve that is the top half of the circle x2+y2=1x^{2}+y^{2}=1, traversed counterclockwise from (1,0)(1,0) to (1,0)(-1,0), and the line segment from (1,0)(-1,0) to (2,3)(-2,3). Evaluate the line integral FTds=Csinxdx+cosydy\int \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \sin x d x+\cos y d y

    Solution

    We consider the integrals over the semicircle, denoted by C1C_1, and the line segment, denoted by C2C_2, seperately. We then have,

    Csinxdx+cosydy=C1sinxdx+cosydy+C2sinxdx+cosydy\int_C\sin{x}dx+\cos{y}dy=\int_{C_1}\sin{x}dx+\cos{y}dy+\int_{C_2}\sin{x}dx+\cos{y}dy

    For the semicircle, we use the parametric equations

    x=cost,y=sint,0tπx=\cos{t},\quad y=\sin{t},\quad 0\leq t\leq\pi

    This yields

    C1sinxdx+cosydy=0πsin(cost)(sint)(cost)dt+cos(sint)dt=cos(cost)0π+sin(sint)0π=cos(1)+cos(1)=0\begin{aligned} \int_{C_1}\sin xdx+\cos ydy&=\int_0^\pi\sin(\cos t)(-\sin t)(\cos t)dt+\cos (\sin t)dt\\ &=\left.-\cos(\cos t)\right|_0^\pi+\left.\sin(\sin t)\right|_0^\pi\\ &=-\cos(-1)+\cos(1)\\ &=0 \end{aligned}

    For the line segment, we use the parametric equations

    x=1t,y=3t,0t1x=-1-t,\quad y=3t,\quad 0\leq t \leq 1

    This yields

    C2sinxdx+cosydy=01sin(1t)(1)dt+cos(3t)(3)dt=cos(1t)01+sin(3t)01=cos(2)+cos(1)+sin(3)sin(0)=cos(2)+cos(1)+sin(3)\begin{aligned}\int_{C_2}\sin xdx+\cos ydy&=\int_0^1 \sin (-1-t)(-1)dt+\cos(3t)(3)dt\\ &=\left. -\cos(-1-t)\right|_0^1+\left.\sin(3t)\right|_0^1\\&=-\cos(-2)+\cos(-1)+\sin(3)-\sin(0)\\ &=-\cos(2)+\cos(1)+\sin(3) \end{aligned}

    We conclude

    Csinxdx+cosydy=cos(1)cos(2)+sin(3)\int_C \sin xdx+\cos ydy=\cos(1)-\cos(2)+\sin(3)

    In evaluating these integrals, we have taken advantage of the rule,

    abf(g(t))g(t)dt=f(g(b))f(g(a))\int_a^b f'(g(t))g'(t)dt=f(g(b))-f(g(a))