Skip to main content

Tutorial 10

Tutorial 10: Multiple Integrals

Tutorial QuestionTutorial Solution
  1. Evaluate the following:

    a. 1223(2xy)dydx\displaystyle\int_{1}^{2} \int_{2}^{3}(2 x-y) d y d x

    Solution
    1223(2xy)dydx=12[(2x)y(y22)]23dx=12[((2x)(3)322)((2x)(2)222)]dx=12[(6x4.5)(4x2)]dx=122x2.5dx=[x22.5x]12=[(45)(12.5)]=451+2.5=0.5\begin{aligned} \int_1^2 \int_2^3(2 x-y) d y d x &=\int_1^2\left[(2 x) y-\left(\frac{y^2}{2}\right)\right]_2^3 d x \\ &=\int_1^2\left[\left((2 x)(3)-\frac{3^2}{2}\right)-\left((2 x)(2)-\frac{2^2}{2}\right)\right] d x \\ &=\int_1^2[(6 x-4.5)-(4 x-2)] d x=\int_1^2 2 x-2.5 d x \\ &=\left[x^2-2.5 x\right]_1^2=[(4-5)-(1-2.5)] \\ &=4-5-1+2.5=0.5 \end{aligned}

    b. 1512(x5y)dxdy\displaystyle\int_{1}^{5} \int_{-1}^{2}(x-5 y) d x d y

    Solution
    1512(x5y)dxdy=15[x22(5y)x]12dy=15[(210y)(0.5+5y)]dy=151.515ydy=[1.5y15y22]15=[(7.5187.5)(1.57.5)]=174\begin{aligned} \int_1^5 \int_{-1}^2(x-5 y) d x d y &=\int_1^5\left[\frac{x^2}{2}-(5 y) x\right]_{-1}^2 d y \\ &=\int_1^5[(2-10 y)-(0.5+5 y)] d y=\int_1^5 1.5-15 y d y \\ &=\left[1.5 y-\frac{15 y^2}{2}\right]_1^5=[(7.5-187.5)-(1.5-7.5)]=-174 \end{aligned}

    c. 1325(2x3y)dxdy\displaystyle\int_{1}^{3} \int_{2}^{5}(2 x-3 y) d x d y

    Solution
    1325(2x3y)dxdy=13[2x22(3y)x]25dy=13[(523(5)y)(223(2)y)]dy=13[219y]dy=[21y9y22]13=[(21(3)9(3)22)(21(1)9(1)22)]=(6340.5)(214.5)=6\begin{aligned} \int_1^3 \int_2^5(2 x-3 y) d x d y&=\int_1^3\left[\frac{2 x^2}{2}-(3 y) x\right]_2^5 d y \\ &=\int_1^3\left[\left(5^2-3(5) y\right)-\left(2^2-3(2) y\right)\right] d y \\ &=\int_1^3[21-9 y] d y \\ &=\left[21 y-\frac{9 y^2}{2}\right]_1^3 \\ &=\left[\left(21(3)-\frac{9(3)^2}{2}\right)-\left(21(1)-\frac{9(1)^2}{2}\right)\right] \\ &=(63-40.5)-(21-4.5)=6 \end{aligned}
  2. Evaluate each of the following integrals over the given region DD :

    a. D(112x212y2)dA\displaystyle\iint_{D}\left(1-\frac{1}{2} x^{2}-\frac{1}{2} y^{2}\right) d A \quad where D\mathrm{D} is the region given by 0x1,0y10 \leq \mathrm{x} \leq 1,0 \leq \mathrm{y} \leq 1

    Solution
    Figure for Solution 2a
    • Because the region R is a square, it is both vertically and horizontally simple, and you can use either order of integration.
    • Choose dydy dxdx by placing a vertical representative rectangle in the region, as shown in the figure at the right.
    R(112x212y2)dA=0101(112x212y2)dydx=01[(112x2)yy36]01dx=01(5612x2)dx=[56xx36]01=23\begin{aligned} \iint_R\left(1-\frac{1}{2} x^2-\frac{1}{2} y^2\right) d A &=\int_0^1 \int_0^1\left(1-\frac{1}{2} x^2-\frac{1}{2} y^2\right) d y d x \\ &=\int_0^1\left[\left(1-\frac{1}{2} x^2\right) y-\frac{y^3}{6}\right]_0^1 d x \\ &=\int_0^1\left(\frac{5}{6}-\frac{1}{2} x^2\right) d x \\ &=\left[\frac{5}{6} x-\frac{x^3}{6}\right]_0^1=\frac{2}{3} \end{aligned}

    b. D(4xyy3)dA\displaystyle\iint_{D}\left(4 x y-y^{3}\right) d A \quad where D\mathrm{D} is the region given by y=x0.5\mathrm{y}=\mathrm{x}^{0.5} and y=x3\mathrm{y}=\mathrm{x}^{3}

    Solution
    D(4xyy3)dA0x1 and x3yx0.5=01x3x0.54xyy3dydx=01[4xy22y44]x3x0.5dx=01[(4x(x0.5)22(x0.5)44)(4x(x3)22(x3)44)]dx=01[(4x22x24)(4x72x124)]dx=01[74x22x7+14x12]dx=[712x314x8+152x13]01=55156\begin{aligned} \iint_D\left(4 x y-y^3\right) d A \quad & 0 \leq x \leq 1 \text { and } x^3 \leq y \leq x^{0.5} \\ &=\int_0^1 \int_{x^3}^{x^{0.5}} 4 x y-y^3 d y d x \\ &=\int_0^1\left[\frac{4 x y^2}{2}-\frac{y^4}{4}\right]_{x^3}^{x^{0.5}} d x \\ &=\int_0^1\left[\left(\frac{4 x\left(x^{0.5}\right)^2}{2}-\frac{\left(x^{0.5}\right)^4}{4}\right)-\left(\frac{4 x\left(x^3\right)^2}{2}-\frac{\left(x^3\right)^4}{4}\right)\right] d x &=\int_0^1\left[\left(\frac{4 x^2}{2}-\frac{x^2}{4}\right)-\left(\frac{4 x^7}{2}-\frac{x^{12}}{4}\right)\right] d x \\ &=\int_0^1\left[\frac{7}{4} x^2-2 x^7+\frac{1}{4} x^{12}\right] d x \\ &=\left[\frac{7}{12} x^3-\frac{1}{4} x^8+\frac{1}{52} x^{13}\right]_0^1 \\ &=\frac{55}{156} \end{aligned}
  3. Evaluate the following integral:

    D42y212xdA where D={(x,y)0x4,(x2)2y6}\iint_{D} 42 y^{2}-12 x d A \quad \text { where } D=\left\{(x, y) \mid 0 \leq x \leq 4,(x-2)^{2} \leq y \leq 6\right\}
    Solution
    Figure for Solution 3
    D42y212xdA=04(x2)2642y212xdydx=04[14y312xy](x2)26dx=04302472x14(x2)6+12x(x2)2dx=04302424x48x2+12x314(x2)6dx=[3024x12x216x3+3x42(x2)7]04=11136\begin{aligned} \iint_D 42 y^2-12 x d A &=\int_0^4 \int_{(x-2)^2}^6 42 y^2-12 x d y d x \\ &=\int_0^4\left[14 y^3-12 x y\right]_{(x-2)^2}^6 d x \\ &=\int_0^4 3024-72 x-14(x-2)^6+12 x(x-2)^2 d x \\ &=\int_0^4 3024-24 x-48 x^2+12 x^3-14(x-2)^6 d x \\ &=\left[3024 x-12 x^2-16 x^3+3 x^4-2(x-2)^7\right]_0^4 \\ &=11136 \end{aligned}
  4. Evaluate the following integral over the indicated rectangle (a) by integrating with respect to xx first and (b) with respect to yy first.

    R12x18ydAR=[1,4]×[2,3]\iint_{R} 12 x-18 y d A \quad R=[-1,4] \times[2,3]
    Solution

    (a)

    R12x18ydA=231412x18ydxdy=23[6x218xy]14dy=239090ydy=[90y45y2]23=135\begin{aligned} \iint_R 12 x-18 y d A &=\int_2^3 \int_{-1}^4 12 x-18 y d x d y \\ &=\int_2^3\left[6 x^2-18 x y\right]_{-1}^4 d y=\int_2^3 90-90 y d y \\ &=\left[90 y-45 y^2\right]_2^3=-135 \end{aligned}

    (b)

    R12x18ydA=142312x18ydydx=14[12xy9y2]23dx=1412x45dx=[6x245x]14=135\begin{aligned} \iint_R 12 x-18 y d A &=\int_{-1}^4 \int_2^3 12 x-18 y d y d x \\ &=\int_{-1}^4\left[12 x y-9 y^2\right]_2^3 d x=\int_{-1}^4 12 x-45 d x \\ &=\left[6 x^2-45 x\right]_{-1}^4=-135 \end{aligned}
  5. Compute the following double integral over the indicated rectangle

    a. R6yx2y3dAR=[1,4]×[0,3]\displaystyle \iint_{R} 6 y \sqrt{x}-2 y^{3} d A \quad R=[1,4] \times[0,3]

    Solution
    R6yx2y3dA=03146yx122y3dxdy=03(4yx322xy3)14dy=0328y6y3dy=(14y232y4)03=92\begin{aligned} \iint_R 6 y \sqrt{x}-2 y^3 d A &=\int_0^3 \int_1^4 6 y x^{\frac{1}{2}}-2 y^3 d x d y \\ &=\left.\int_0^3\left(4 y x^{\frac{3}{2}}-2 x y^3\right)\right|_1 ^4 d y=\int_0^3 28 y-6 y^3 d y \\ &=\left.\left(14 y^2-\frac{3}{2} y^4\right)\right|_0 ^3=\frac{9}{2} \end{aligned}

    b. Ryey24xdAR=[0,2]×[0,8]\displaystyle\iint_{R} y e^{y^{2}-4 x} d A \quad R=[0,2] \times[0, \sqrt{8}]

    Solution
    R6yx2y3dA=03146yx122y3dxdy=03(4yx322xy3)14dy=0328y6y3dy=(14y232y4)03=92=02(12ey24x)08dx=0212(e84xe4x)dx=(12(14e84x+14e4x))02=18(e8+e82)=372.3698\begin{aligned} \iint_R 6 y \sqrt{x}-2 y^3 d A &=\int_0^3 \int_1^4 6 y x^{\frac{1}{2}}-2 y^3 d x d y \\ &=\left.\int_0^3\left(4 y x^{\frac{3}{2}}-2 x y^3\right)\right|_1 ^4 d y=\int_0^3 28 y-6 y^3 d y \\ &=\left.\left(14 y^2-\frac{3}{2} y^4\right)\right|_0 ^3=\frac{9}{2}\\ &=\left.\int_0^2\left(\frac{1}{2} e^{y^2-4 x}\right)\right|_0 ^{\sqrt{8}} d x=\int_0^2 \frac{1}{2}\left(e^{8-4 x}-e^{-4 x}\right) d x \\ &=\left.\left(\frac{1}{2}\left(-\frac{1}{4} e^{8-4 x}+\frac{1}{4} e^{-4 x}\right)\right)\right|_0 ^2 \\ &=\frac{1}{8}\left(e^8+e^{-8}-2\right)=372.3698 \end{aligned}
  6. Evaluate:

    a. 3112016xyzdydxdz\displaystyle\int_{-3}^{1} \int_{-1}^{2} \int_{0}^{1} 6 x y z d y d x d z

    Solution
    3112016xyzdydxdz=3112[3xy2z]01dxdz=31123xzdxdz=31[32x2z]12dz=31[6z32z]dz=31[92z]dz=[94z2]31=9494(9)=94814=724=18\begin{aligned} \int_{-3}^1 \int_{-1}^2 \int_0^1 6 x y z d y d x d z &=\int_{-3}^1 \int_{-1}^2\left[3 x y^2 z\right]_0^1 d x d z \\ &=\int_{-3}^1 \int_{-1}^2 3 x z d x d z \\ &=\int_{-3}^1\left[\frac{3}{2} x^2 z\right]_{-1}^2 d z=\int_{-3}^1\left[6 z-\frac{3}{2} z\right] d z \\ &=\int_{-3}^1\left[\frac{9}{2} z\right] d z=\left[\frac{9}{4} z^2\right]_{-3}^1 \\ &=\frac{9}{4}-\frac{9}{4}(9)=\frac{9}{4}-\frac{81}{4} \\ &=\frac{-72}{4}=-18 \end{aligned}

    b. 042112xydxdydz\displaystyle \int_{0}^{4} \int_{-2}^{-1} \int_{1}^{2} x y d x d y d z

    Solution
    042112xydxdydz=0421[x22y]12dydz=04211.5ydydz=04[1.5y22]21dz=042.25dz=[2.25z]04=9\begin{aligned} \int_0^4 \int_{-2}^{-1} \int_1^2 x y d x d y d z &=\int_0^4 \int_{-2}^{-1}\left[\frac{x^2}{2} y\right]_1^2 d y d z=\int_0^4 \int_{-2}^{-1} 1.5 y d y d z \\ &=\int_0^4\left[\frac{1.5 y^2}{2}\right]_{-2}^{-1} d z=\int_0^4-2.25 d z \\ &=[-2.25 z]_0^4=-9 \end{aligned}
  7. Evaluate:

    a. Bxyz2dV0x11y20z3\displaystyle\iiint_{B} x y z^{2} d V\qquad\begin{aligned} &0 \leq x \leq 1 \\ &-1 \leq y \leq 2 \\ &0 \leq z \leq 3\end{aligned}

    Solution
    Bxyz2dV=031201xyz2dxdydz=0312[x2yz22]x=0x=1dydz=0312yz22dydz=03[y2z24]y=1y=2dz=033z24dz=[z34]03=274\begin{aligned} \iiint_{B} x y z^{2} d V&=\int_0^3 \int_{-1}^2 \int_0^1 x y z^2 d x d y d z\\ &=\int_0^3 \int_{-1}^2\left[\frac{x^2 y z^2}{2}\right]_{x=0}^{x=1} d y d z=\int_0^3 \int_{-1}^2 \frac{y z^2}{2} d y d z\\ &=\int_0^3\left[\frac{y^2 z^2}{4}\right]_{y=-1}^{y=2} d z=\int_0^3 \frac{3 z^2}{4} d z\\ &=\left[\frac{z^3}{4}\right]_0^3=\frac{27}{4} \end{aligned}

    b. B4x2yz3dzdydx2x31y40z1\displaystyle\iiint_{B} 4x^2y-z^3 dz dy dx \qquad\begin{aligned} &2 \leq x \leq 3 \\ &-1 \leq y \leq 4 \\ &0 \leq z \leq 1\end{aligned}

    Solution
    B4x2yz3dzdydx=2314[4x2yz14z4]01dydx=2314[4x2yz14z4]01dydx=2314144x2ydydx=23[14y2x2y2]14dx=235430x2dx=[54x10x3]23=7554\begin{aligned} \iiint_{B} 4x^2y-z^3 dz dy dx&=\int_2^3 \int_{-1}^4\left[4 x^2 y z-\frac{1}{4} z^4\right]_0^1 d y d x \\ &=\int_2^3 \int_{-1}^4\left[4 x^2 y z-\frac{1}{4} z^4\right]_0^1 d y d x \\ &=\int_2^3 \int_{-1}^4 \frac{1}{4}-4 x^2 y d y d x \\ &=\int_2^3\left[\frac{1}{4} y-2 x^2 y^2\right]_{-1}^4 d x=\int_2^3 \frac{5}{4}-30 x^2 d x \\ &=\left[\frac{5}{4} x-10 x^3\right]_2^3=-\frac{755}{4} \end{aligned}
  8. Integrate the function (x,y,z)=xy(x, y, z)=x y over the volume enclose by the planes z=x+yz=x+y and z=0z=0, and between the surfaces y=x2y=x^{2} and x=y2x=y^{2}.

    Solution

    Since zz is expressed as a function of (x,y)(x, y), the integration is done in the zz direction first. Considering the xyxy-plane, the two curves meet at (0,0)(0, 0) and (1,1)(1, 1). The integral is:

    01x2x0x+yf(x,y,z)dzdydx=01x2x0x+yxydzdydx=01x2xxy[z]z=0z=x+ydydx=01x2xxy(x+y)dydx01x2xx2y+y2xdydx=01[x2y22+y3x3]y=x2y=xdx=1201(x2x2x2(x2)2)dx=1201(x3x6)dx+1301(xx(x2)52x7)dx=12[x44x77]01+13[2x727x88]01=12(1417)+13(2718)=328\begin{aligned} \int_0^1 \int_{x^2}^{\sqrt{x}} \int_0^{x+y} f(x, y, z) d z d y d x &=\int_0^1 \int_{x^2}^{\sqrt{x}} \int_0^{x+y} x y d z d y d x \\ &=\int_0^1 \int_{x^2}^{\sqrt{x}} x y[z]_{z=0}^{z=x+y} d y d x \\ &=\int_0^1 \int_{x^2}^{\sqrt{x}} x y(x+y) d y d x \int_0^1 \int_{x^2}^{\sqrt{x}} x^2 y+y^2 x d y d x \\ &=\int_0^1\left[\frac{x^2 y^2}{2}+\frac{y^3 x}{3}\right]_{y=x^2}^{y=\sqrt{x}} d x \\ &=\frac{1}{2} \int_0^1\left(x^2 \sqrt{x}{ }^2-x^2\left(x^2\right)^2\right) d x \\ &=\frac{1}{2} \int_0^1\left(x^3-x^6\right) d x+\frac{1}{3} \int_0^1\left(\sqrt{x} x-\left(x^2\right)^{\frac{5}{2}}-x^7\right) d x \\ &=\frac{1}{2}\left[\frac{x^4}{4}-\frac{x^7}{7}\right]_0^1+\frac{1}{3}\left[\frac{2 x^{\frac{7}{2}}}{7}-\frac{x^8}{8}\right]_0^1 \\ &=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{3}\left(\frac{2}{7}-\frac{1}{8}\right)=\frac{3}{28} \end{aligned}
  9. Find the mass for the following square lamina, represented by the unit square (shown below) with variable density ρ(x,y)=(x+y+2)g/cm2\rho(x, y)=(x+y+2) \mathrm{g} / \mathrm{cm}^{2}.

    Figure for Question 9

    Figure 1. A region R representing a lamina

    Solution
    M=R(x+y+2)dA=0101(x+y+2)dxdy=01[12x2+x(y+2)]01dy=0152+ydy=[52y+y22]01=52+12=3g\begin{aligned} M=\iint_R(x+y+2) d A &=\int_0^1 \int_0^1(x+y+2) d x d y \\ &=\int_0^1\left[\frac{1}{2} x^2+x(y+2)\right]_0^1 d y \\ &=\int_0^1 \frac{5}{2}+y d y \\ &=\left[\frac{5}{2} y+\frac{y^2}{2}\right]_0^1 \\ &=\frac{5}{2}+\frac{1}{2} \\ &=3 g \end{aligned}
  10. Find the mass and center of mass for the following solid region QQ bounded by x+2y+3zx+2 y+3 z =6=6 and the coordinate planes (as shown below) and has density ρ(x,y,z)=x2yz\rho(x, y, z)=x^{2} y z.

    Figure for Question 10

    Figure 2: Finding the mass of a three-dimensional solid Q.

    Solution

    The region QQ is a tetrahedron meeting the axes at the points (6,0,0),(0,3,0)(6,0,0),(0,3,0) and (0,0,2)(0,0,2). To find the limits of integration, let z=0z=0 in the slated plane z=13(6x2y)z=\frac{1}{3}(6-x-2 y).

    Then for xx and yy, find the projection of QQ onto the xyx y-plane, which is bounded by the axes and the line x+2y=6x+2 y=6. Therefore, the mass (m)(m) is:

    m=Qρ(x,y,z)dV=x=0x=6y=0y=12(6xz=0z=13(6x2y)x2yzdzdydx=10835\begin{aligned} m=\iiint_Q \rho(x, y, z) d V &=\int_{x=0}^{x=6} \int_{y=0}^{y=\frac{1}{2}\left(6-x_{-}\right.} \int_{z=0}^{z=\frac{1}{3}(6-x-2 y)} x^2 y z d z d y d x \\ &=\frac{108}{35} \end{aligned}

    To find the center of mass of Q\mathrm{Q}, we need to find the moments about the xyx y-plane, the xzx z-plane and the yzy z-plane:

    Mxy=Qzρ(x,y,z)dV=x=0x=6y=0y=12(6x)z=0z=13(6x2y)x2yz2dzdydx=5435Mxz=Qyρ(x,y,z)dV=x=0x=6y=0y=12(6x)z=0z=13(6x2y)x2y2zdzdydx=8135Myz=Qxρ(x,y,z)dV=x=0x=6y=0y=12(6x)z=0z=13(6x2y)x3yzdzdydx=24335\begin{aligned} M_{x y}&=\iiint_Q z \rho(x, y, z) d V&&=\int_{x=0}^{x=6} \int_{y=0}^{y=\frac{1}{2}(6-x)} \int_{z=0}^{z=\frac{1}{3}(6-x-2 y)} x^2 y z^2 d z d y d x\\ &&&=\frac{54}{35} \\\\ M_{x z}&=\iiint_Q y \rho(x, y, z) d V&&=\int_{x=0}^{x=6} \int_{y=0}^{y=\frac{1}{2}(6-x)} \int_{z=0}^{z=\frac{1}{3}(6-x-2 y)} x^2 y^2 z d z d y d x\\ &&&=\frac{81}{35}\\\\ M_{y z}&=\iiint_Q x \rho(x, y, z) d V&&=\int_{x=0}^{x=6} \int_{y=0}^{y=\frac{1}{2}(6-x)} \int_{z=0}^{z=\frac{1}{3}(6-x-2 y)} x^3 y z d z d y d x\\ &&&=\frac{243}{35} \end{aligned}

    Hence the center of mass is:

    xˉ=Myzmyˉ=Mxzmzˉ=Mxymxˉ=Myzm=243/35108/35=243108yˉ=Mxzm=81/35108/35=81108yˉ=Mxym=54/35108/35=54108=2.25=0.75=0.5\begin{aligned} \bar{x}&=\frac{M_{y z}}{m} & \bar{y}&=\frac{M_{x z}}{m} & \bar{z}&=\frac{M_{x y}}{m} \\ \bar{x}&=\frac{M_{y z}}{m}=\frac{243 / 35}{108 / 35}=\frac{243}{108} & \bar{y}&=\frac{M_{x z}}{m}=\frac{81 / 35}{108 / 35}=\frac{81}{108} & \bar{y}&=\frac{M_{x y}}{m}=\frac{54 / 35}{108 / 35}=\frac{54}{108} \\ &=2.25 & &=0.75 & &=0.5 \end{aligned}

    The center of mass: (2.25,0.75,0.5)\quad(2.25,0.75,0.5)

Your Help needed

This website has received 3000 view in the first two weeks! However, this project repository did not receive any star! Just simply head over to this website's repository to give it a star! Every tutorial takes me around two hours to compile, proof-read and styling this website! Your simple action would encourage me a lot! Thank you! You could Buy me a coffee too!