Skip to main content

Tutorial 8

Tutorial 8: Integration

Tutorial QuestionTutorial Solution
  1. Find

    ln(x2+2)dx\int \ln \left(x^{2}+2\right) d x
    Solution

    Let u=ln(x2+2)u=\ln\left( x^{2} +2\right), dv=dxdv=dx

    u=ln(x2+2)dv=dxdu=2xx2+2dxv=x\begin{aligned} u & =\ln\left( x^{2} +2\right) & dv & =dx \\ du & =\frac{2x}{x^{2} +2} dx & v &=x \end{aligned}

    So,

    ln(x2+2)dx=xln(x2+2)2x2x2+2dx=xln(x2+2)2(12x2+2)dx=xln(x2+2)2x+42tan1(x2)+C=x(ln(x2+2)2)+22tan1(x2)+C\begin{aligned} \int \ln\left( x^{2} +2\right) dx & =x\ln\left( x^{2} +2\right) -2\int \frac{x^{2}}{x^{2} +2} dx\\ & =x\ln\left( x^{2} +2\right) -2\int \left( 1-\frac{2}{x^{2} +2}\right) dx\\ & =x\ln\left( x^{2} +2\right) -2x+\frac{4}{\sqrt{2}}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right) +C\\ & =x\left(\ln\left( x^{2} +2\right) -2\right) +2\sqrt{2}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right) +C\end{aligned}
  2. Find

    x2lnxdx\int x^{2} \ln x d x
    Solution

    Let u=lnxu=\ln x, dv=x2 dxdv=x^{2} \ dx

    u=lnxdv=dxdu=dxxv=x33\begin{aligned} u & =\ln x &dv & =dx \\ du & =\frac{dx}{x} &v & =\frac{x^{3}}{3} \end{aligned}

    So,

    x2lnx dx=x33lnxx33dxx=x33lnx13x2dx=x33lnx19x3+C\begin{aligned} \int x^{2}\ln x\ dx & =\frac{x^{3}}{3}\ln x-\int \frac{x^{3}}{3}\frac{dx}{x}\\ & =\frac{x^{3}}{3}\ln x-\frac{1}{3}\int x^{2} dx\\ & =\frac{x^{3}}{3}\ln x-\frac{1}{9} x^{3} +C \end{aligned}
  3. Find

    x3ex2dx\int x^{3} e^{x^{2}} d x
    Solution

    Let u=x2u=x^{2} and dv=xex2dxdv=xe^{x^{2}} dx

    u=x2dv=xex2du=2x dxv=12ex2\begin{aligned} u & =x^{2} &dv &=xe^{x^{2}} \\ du & =2x\ dx &v & =\frac{1}{2} e^{x^2} \end{aligned}

    Hence,

    x3ex2 dx=12x2ex2xex2dx=12x2ex212ex2+C=12ex2(x21)+C\begin{aligned} \int x^{3} e^{x^{2}} \ dx & =\frac{1}{2} x^{2} e^{x^{2}} -\int xe^{x^{2}} dx\\ & =\frac{1}{2} x^{2} e^{x^{2}} -\frac{1}{2} e^{x^{2}} +C\\ & =\frac{1}{2} e^{x^{2}}\left( x^{2} -1\right) +C \end{aligned}
  4. Find

    (x+1)x3+x26xdx\int \frac{(x+1)}{x^{3}+x^{2}-6 x} d x
    Solution

    Factoring the denomenator x3+x26x=x(x2+x6)=x(x2)(x+3)x^{3} +x^{2} -6x=x\left( x^{2} +x-6\right) =x( x-2)(x+3). The integrand is now (x+1)x(x2)(x+3)\frac{( x+1)}{x(x-2)(x+3)}.

    Representing the integrand such that:

    (x+1)x(x2)(x+3)=Ax+Bx2+Cx+3(1)\frac{( x+1)}{x( x-2)( x+3)} =\frac{A}{x} +\frac{B}{x-2} +\frac{C}{x+3} \tag{1}

    Multiplying equation (1) with x(x2)(x+3)x( x-2)( x+3),

    x+1=A(x2)(x+3)+Bx(x+3)+Cx(x2)(2)x+1=A( x-2)( x+3) +Bx( x+3) +Cx( x-2) \tag{2}

    Let x=0x=0 in (2), 1=A(2)(3)+B(0)(3)+C(0)(2)  1=6A1=A( -2)( 3) +B( 0)( 3) +C( 0)( -2) \ \Rightarrow \ 1=-6A. So, A=16A=-\frac{1}{6}.

    Let x=2x=2 in (2), 3=A(0)(5)+B(2)(5)+C(2)(0)   3=10B3=A( 0)( 5) +B( 2)( 5) +C( 2)( 0) \ \ \Rightarrow \ 3=10B. So, B=310B=\frac{3}{10}.

    Let x=3x=-3 in (2), 2=A(5)(0)+B(3)(0)+C(3)(5)  2=15C-2=A( -5)( 0) +B( -3)( 0) +C( -3)( -5) \ \Rightarrow \ -2=15C. So, C=215C=-\frac{2}{15}.

    Therefore,

    (x+1)x3+x26x dx=(161x+3101x22151x+3) dx=16lnx +310lnx2215lnx+3 +C\begin{aligned} \int \frac{( x+1)}{x^{3} +x^{2} -6x} \ dx & =\int \left( -\frac{1}{6}\frac{1}{x} +\frac{3}{10}\frac{1}{x-2} -\frac{2}{15}\frac{1}{x+3}\right) \ dx\\ & =-\frac{1}{6}\ln |x|\ +\frac{3}{10}\ln |x-2|-\frac{2}{15}\ln |x+3|\ +C \end{aligned}
  5. Find

    x3+x2+x+2x4+3x2+2dx\int \frac{x^{3}+x^{2}+x+2}{x^{4}+3 x^{2}+2} d x
    Solution

    Factoring the denomenator x4+3x2+2=(x2+1)(x2+2)x^{4} +3x^{2} +2=\left( x^{2} +1\right)\left( x^{2} +2\right).

    The integrand is now x3+x2+x+2(x2+1)(x2+2)\displaystyle\frac{x^{3} +x^{2} +x+2}{\left( x^{2} +1\right)\left( x^{2} +2\right)}.

    Representing the integrand such that:

    x3+x2+x+2(x2+1)(x2+2)=Ax+Bx2+1+Cx+Dx2+2(3)\frac{x^{3} +x^{2} +x+2}{\left( x^{2} +1\right)\left( x^{2} +2\right)} =\frac{Ax+B}{x^{2} +1} +\frac{Cx+D}{x^{2} +2} \tag{3}

    Multiplying equation (3) with (x2+1)(x2+2)\left( x^{2} +1\right)\left( x^{2} +2\right),

    [b]x3+x2+x+2=(Ax+B)(x2+2)+(Cx+D)(x2+1)=Ax3+2Ax+Bx2+2B+Cx3+Cx+Dx2+D=(A+C)x3+(B+D)x2+(2A+C)x+(2B+D)(4)\begin{aligned}[b] x^{3} +x^{2} +x+2 & =( Ax+B)\left( x^{2} +2\right) +( Cx+D)\left( x^{2} +1\right)\\ & =Ax^{3} +2Ax+Bx^{2} +2B+Cx^{3} +Cx+Dx^{2} +D\\ & =( A+C) x^{3} +( B+D) x^{2} +( 2A+C) x+( 2B+D) \end{aligned} \tag{4}

    Comparing LHS and RHS of equation (4),

    A+C=1B+D=12A+C=12B+D=2(5)\begin{aligned} A+C & =1\\ B+D & =1\\ 2A+C & =1\\ 2B+D & =2 \end{aligned} \tag{5}

    Solving equation (5) simultaneously to obtain A=0A=0, B=1B=1, C=1C=1, D=0D=0

    Therefore,

    x3+x2+x+2(x2+1)(x2+2)dx=(1x2+1+xx2+2)dx=tan1x+12ln(x2+2)+C\begin{aligned} \int \frac{x^{3} +x^{2} +x+2}{\left( x^{2} +1\right)\left( x^{2} +2\right)} dx & =\int \left(\frac{1}{x^{2} +1} +\frac{x}{x^{2} +2}\right) dx\\ & =\tan^{-1} x+\frac{1}{2}\ln\left( x^{2} +2\right) +C \end{aligned}
  6. Find

    tan3(3x)sec4(3x)dx\int \tan ^{3}(3 x) \sec ^{4}(3 x) d x
    Solution
    tan3(3x) sec4(3x) dx=tan3(3x) (1+tan2(3x))sec2(3x) dx=tan3(3x)sec2(3x) dx+tan5(3x)sec2(3x) dx=1314tan4(3x)+1316tan6(3x)+C=112tan4(3x)+118tan6(3x)+C\begin{aligned} \int \tan^{3}( 3x) \ \sec^{4}( 3x) \ dx & =\int \tan^{3}( 3x) \ \left( 1+\tan^{2}( 3x)\right)\sec^{2}( 3x) \ dx\\ & =\int \tan^{3}( 3x)\sec^{2}( 3x) \ dx+\int \tan^{5}( 3x)\sec^{2}( 3x) \ dx\\ & =\frac{1}{3}\frac{1}{4}\tan^{4}( 3x) +\frac{1}{3}\frac{1}{6}\tan^{6}( 3x) +C\\ & =\frac{1}{12}\tan^{4}( 3x) +\frac{1}{18}\tan^{6}( 3x) +C \end{aligned}
  7. Find

    sin4(x)cos7(x)dx\int \sin ^{4}(x) \cos ^{7}(x) d x
    Solution

    Using trigonometry identity, sin2x+cos2x=1  cos2x=1sin2x\sin^{2} x+\cos^{2} x=1\ \Longrightarrow \ \cos^{2} x=1-\sin^{2} x

    sin4(x)cos7(x) dx=sin4(x)cos6(x)cos(x) dx=sin4(x)(1sin2(x))3cos(x) dx\begin{aligned} \int \sin^{4}( x)\cos^{7}( x) \ dx & =\int \sin^{4}( x)\cos^{6}( x)\cos( x) \ dx\\ & =\int \sin^{4}( x)\left( 1-sin^{2}( x)\right)^{3}\cos( x) \ dx \end{aligned}

    Let u=sinxu=\sin x, du=cos(x) dxdu=\cos( x) \ dx,

    sin4(x)cos7(x) dx=u4(1u2)3  du=u4(1u2)(1u2)2du=u4(1u2)(12u2+u4)du=u4(12u2+u4u2+2u4u6)du=u4(13u2+3u4u6)du=u43u6+3u8u10du=15u537u7+39u9111u11+C\begin{aligned} \int \sin^{4}( x)\cos^{7}( x) \ dx & =\int u^{4}\left( 1-u^{2}\right)^{3} \ \ du\\ & =\int u^{4}\left( 1-u^{2}\right)\left( 1-u^{2}\right)^{2} du\\ & =\int u^{4}\left( 1-u^{2}\right)\left( 1-2u^{2} +u^{4}\right) du\\ & =\int u^{4}\left( 1-2u^{2} +u^{4} -u^{2} +2u^{4} -u^{6}\right) du\\ & =\int u^{4}\left( 1-3u^{2} +3u^{4} -u^{6}\right) du\\ & =\int u^{4} -3u^{6} +3u^{8} -u^{10} du\\ & =\frac{1}{5} u^{5} -\frac{3}{7} u^{7} +\frac{3}{9} u^{9} -\frac{1}{11} u^{11} +C \end{aligned}

    Substituting back u=sinxu=\sin x,

    sin4(x)cos7(x) dx=15sin5x37sin7x+13sin9x111sin11x+C\int \sin^{4}( x)\cos^{7}( x) \ dx=\frac{1}{5}\sin^{5} x-\frac{3}{7}\sin^{7} x+\frac{1}{3}\sin^{9} x-\frac{1}{11}\sin^{11} x+C
  8. Find

    dxx29x2\int \frac{d x}{x^{2} \sqrt{9-x^{2}}}
    Solution

    Let x=3sinθx=3\sin \theta, therefore θ=sin1x3\theta =\sin^{-1}\frac{x}{3}. Then, dx=3cosθ dθdx=3\cos \theta \ d\theta, and

    9x2=9(3sinθ)2=99sin2θ=31sin2θ=3cos2θ=3cosθ\begin{aligned} \sqrt{9-x^{2}} & =\sqrt{9-( 3\sin \theta )^{2}}\\ & =\sqrt{9-9\sin^{2} \theta }\\ & =3\sqrt{1-\sin^{2} \theta }\\ & =3\sqrt{\cos^{2} \theta }\\ & =3\cos \theta \end{aligned}

    Using defination of inverse sine, π2<θ<π2-\frac{\pi }{2} < \theta < \frac{\pi }{2}. Therefore, cosθ>0\cos \theta >0.

    Thus, cosθ=cosθ=9x23\displaystyle\cos \theta =\vert \cos \theta \vert =\frac{\sqrt{9-x^{2}}}{3}.

    Hence,

    dxx29x2 =3cosθ dθ9sin2θ(3cosθ)=19csc2θ dθ=19cotθ+C=19cosθsinθ+C=199x23x3+C=199x2x+C\begin{aligned} \int \frac{dx}{x^{2}\sqrt{9-x^{2}}} \ & =\int \frac{3\cos \theta \ d\theta }{9\sin^{2} \theta ( 3\cos \theta )}\\ & =\frac{1}{9}\int \csc^{2} \theta \ d\theta \\ & =-\frac{1}{9}\cot \theta +C\\ & =-\frac{1}{9}\frac{\cos \theta }{\sin \theta } +C\\ & =-\frac{1}{9}\frac{\frac{\sqrt{9-x^{2}}}{3}}{\frac{x}{3}} +C\\ & =-\frac{1}{9}\frac{\sqrt{9-x^{2}}}{x} +C \end{aligned}

Additional exercises

Please integrate

  1. x+7x2(x+2)dx\displaystyle\int \frac{x+7}{x^{2}(x+2)} d x

    Solution

    Decompose into partial fractions (There is a repeated linear factor!), getting

    x+7x2(x+2)dx=(Ax+Bx2+Cx+2)dx\int \frac{x+7}{x^2(x+2)} d x=\int\left(\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+2}\right) d x

    After getting a common denominator, adding fractions, and equating numerators, it follows that Ax(x+2)+B(x+2)+Cx2=x+7A x(x+2)+B(x+2)+C x^2=x+7;

    let x=0:A(0)+B(2)+C(0)=7B=72x=0: A(0)+B(2)+C(0)=7 \longrightarrow B=\frac{7}{2};

    let x=2:A(0)+B(0)+C(4)=5C=54x=-2: A(0)+B(0)+C(4)=5 \longrightarrow C=\frac{5}{4};

    let x=1:A(1)+B(1)+C(1)=A+72+54=6A=54x=-1: A(-1)+B(1)+C(1)=-A+\frac{7}{2}+\frac{5}{4}=6 \longrightarrow A=-\frac{5}{4}.

    x+7x2(x+2)dx=(5/4x+7/2x2+5/4x+2)dx=((5/4)1x+(7/2)x2+(5/4)1x+2)dx=(5/4)lnx+(7/2)x1(1)+(5/4)lnx+2+C=54lnx72x+54lnx+2+C\begin{aligned} \int \frac{x+7}{x^{2}(x+2)} d x&=\int\left(\frac{-5 / 4}{x}+\frac{7 / 2}{x^2}+\frac{5 / 4}{x+2}\right) d x \\ &=\int\left(-(5 / 4) \frac{1}{x}+(7 / 2) x^{-2}+(5 / 4) \frac{1}{x+2}\right) d x \\ &=-(5 / 4) \ln |x|+(7 / 2) \frac{x^{-1}}{(-1)}+(5 / 4) \ln |x+2|+C \\ &=-\frac{5}{4} \ln |x|-\frac{7}{2 x}+\frac{5}{4} \ln |x+2|+C \end{aligned}
  2. cosxsin3x+sinxdx\displaystyle\int \frac{\cos x}{\sin ^{3} x+\sin x} d x

    Solution

    Use the method of u-substitution first. Let u=sinxu=\sin x so that du=cosxdxd u=\cos x d x.

    Substitute into the original problem, replacing all forms of xx, getting

    cosxsin3x+sinxdx=1sin3x+sinxcosxdx=1u3+udu\begin{aligned} \int \frac{\cos x}{\sin ^3 x+\sin x} d x&=\int \frac{1}{\sin ^3 x+\sin x} \cos x d x \\ &=\int \frac{1}{u^3+u} d u \end{aligned}

    Factor and decompose into partial fractions.

    =1u(u2+1)du=(Au+Bu+Cu2+1)du\begin{aligned} &=\int \frac{1}{u\left(u^2+1\right)} d u \\ &=\int\left(\frac{A}{u}+\frac{B u+C}{u^2+1}\right) d u \end{aligned}

    After getting a common denominator, adding fractions, and equating numerators, it follows that A(u2+1)+(Bu+C)u=1A\left(u^2+1\right)+(B u+C) u=1;

    let u=0:A(1)+0=1A=1u=0: A(1)+0=1 \longrightarrow A=1;

    let u=i:A(i2+1)+(Bi+C)i=A(0)+Bi2+Ci=B+Ci=1u=i: A\left(i^2+1\right)+(B i+C) i=A(0)+B i^2+C i=-B+C i=1;

    it follows that B=1B=-1 and C=0C=0.

    =(1u+uu2+1)du=lnu12lnu2+1+C=lnsinx12lnsin2x+1+C\begin{aligned} &=\int\left(\frac{1}{u}+\frac{-u}{u^2+1}\right) d u \\ &=\ln |u|-\frac{1}{2} \ln \left|u^2+1\right|+C \\ &=\ln |\sin x|-\frac{1}{2} \ln \left|\sin ^2 x+1\right|+C \end{aligned}
Your Help needed

This website has received 3000 view in the first two weeks! However, this project repository did not receive any star! Just simply head over to this website's repository to give it a star! Every tutorial takes me around two hours to compile, proof-read and styling this website! Your simple action would encourage me a lot! Thank you! You could Buy me a coffee too!