Skip to main content

Tutorial 8

Tutorial 8: Integration

  1. Find

    ln(x2+2)dx\int \ln \left(x^{2}+2\right) d x
    Solution

    Let u=ln(x2+2)u=\ln\left( x^{2} +2\right), dv=dxdv=dx

    u=ln(x2+2)dv=dxdu=2xx2+2dxv=x\begin{aligned} u & =\ln\left( x^{2} +2\right) & dv & =dx \\ du & =\frac{2x}{x^{2} +2} dx & v &=x \end{aligned}

    So,

    ln(x2+2)dx=xln(x2+2)2x2x2+2dx=xln(x2+2)2(12x2+2)dx=xln(x2+2)2x+42tan1(x2)+C=x(ln(x2+2)2)+22tan1(x2)+C\begin{aligned} \int \ln\left( x^{2} +2\right) dx & =x\ln\left( x^{2} +2\right) -2\int \frac{x^{2}}{x^{2} +2} dx\\ & =x\ln\left( x^{2} +2\right) -2\int \left( 1-\frac{2}{x^{2} +2}\right) dx\\ & =x\ln\left( x^{2} +2\right) -2x+\frac{4}{\sqrt{2}}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right) +C\\ & =x\left(\ln\left( x^{2} +2\right) -2\right) +2\sqrt{2}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right) +C\end{aligned}
  2. Find

    x2lnxdx\int x^{2} \ln x d x
    Solution

    Let u=lnxu=\ln x, dv=x2 dxdv=x^{2} \ dx

    u=lnxdv=dxdu=dxxv=x33\begin{aligned} u & =\ln x &dv & =dx \\ du & =\frac{dx}{x} &v & =\frac{x^{3}}{3} \end{aligned}

    So,

    x2lnx dx=x33lnxx33dxx=x33lnx13x2dx=x33lnx19x3+C\begin{aligned} \int x^{2}\ln x\ dx & =\frac{x^{3}}{3}\ln x-\int \frac{x^{3}}{3}\frac{dx}{x}\\ & =\frac{x^{3}}{3}\ln x-\frac{1}{3}\int x^{2} dx\\ & =\frac{x^{3}}{3}\ln x-\frac{1}{9} x^{3} +C \end{aligned}
  3. Find

    x3ex2dx\int x^{3} e^{x^{2}} d x
    Solution

    Let u=x2u=x^{2} and dv=xex2dxdv=xe^{x^{2}} dx

    u=x2dv=xex2du=2x dxv=12ex2\begin{aligned} u & =x^{2} &dv &=xe^{x^{2}} \\ du & =2x\ dx &v & =\frac{1}{2} e^{x^2} \end{aligned}

    Hence,

    x3ex2 dx=12x2ex2xex2dx=12x2ex212ex2+C=12ex2(x21)+C\begin{aligned} \int x^{3} e^{x^{2}} \ dx & =\frac{1}{2} x^{2} e^{x^{2}} -\int xe^{x^{2}} dx\\ & =\frac{1}{2} x^{2} e^{x^{2}} -\frac{1}{2} e^{x^{2}} +C\\ & =\frac{1}{2} e^{x^{2}}\left( x^{2} -1\right) +C \end{aligned}
  4. Find

    (x+1)x3+x26xdx\int \frac{(x+1)}{x^{3}+x^{2}-6 x} d x
    Solution

    Factoring the denomenator x3+x26x=x(x2+x6)=x(x2)(x+3)x^{3} +x^{2} -6x=x\left( x^{2} +x-6\right) =x( x-2)(x+3). The integrand is now (x+1)x(x2)(x+3)\frac{( x+1)}{x(x-2)(x+3)}.

    Representing the integrand such that:

    (x+1)x(x2)(x+3)=Ax+Bx2+Cx+3(1)\frac{( x+1)}{x( x-2)( x+3)} =\frac{A}{x} +\frac{B}{x-2} +\frac{C}{x+3} \tag{1}

    Multiplying equation (1) with x(x2)(x+3)x( x-2)( x+3),

    x+1=A(x2)(x+3)+Bx(x+3)+Cx(x2)(2)x+1=A( x-2)( x+3) +Bx( x+3) +Cx( x-2) \tag{2}

    Let x=0x=0 in (2), 1=A(2)(3)+B(0)(3)+C(0)(2)  1=6A1=A( -2)( 3) +B( 0)( 3) +C( 0)( -2) \ \Rightarrow \ 1=-6A. So, A=16A=-\frac{1}{6}.

    Let x=2x=2 in (2), 3=A(0)(5)+B(2)(5)+C(2)(0)   3=10B3=A( 0)( 5) +B( 2)( 5) +C( 2)( 0) \ \ \Rightarrow \ 3=10B. So, B=310B=\frac{3}{10}.

    Let x=3x=-3 in (2), 2=A(5)(0)+B(3)(0)+C(3)(5)  2=15C-2=A( -5)( 0) +B( -3)( 0) +C( -3)( -5) \ \Rightarrow \ -2=15C. So, C=215C=-\frac{2}{15}.

    Therefore,

    (x+1)x3+x26x dx=(161x+3101x22151x+3) dx=16lnx +310lnx2215lnx+3 +C\begin{aligned} \int \frac{( x+1)}{x^{3} +x^{2} -6x} \ dx & =\int \left( -\frac{1}{6}\frac{1}{x} +\frac{3}{10}\frac{1}{x-2} -\frac{2}{15}\frac{1}{x+3}\right) \ dx\\ & =-\frac{1}{6}\ln |x|\ +\frac{3}{10}\ln |x-2|-\frac{2}{15}\ln |x+3|\ +C \end{aligned}
  5. Find

    x3+x2+x+2x4+3x2+2dx\int \frac{x^{3}+x^{2}+x+2}{x^{4}+3 x^{2}+2} d x
    Solution

    Factoring the denomenator x4+3x2+2=(x2+1)(x2+2)x^{4} +3x^{2} +2=\left( x^{2} +1\right)\left( x^{2} +2\right).

    The integrand is now x3+x2+x+2(x2+1)(x2+2)\displaystyle\frac{x^{3} +x^{2} +x+2}{\left( x^{2} +1\right)\left( x^{2} +2\right)}.

    Representing the integrand such that:

    x3+x2+x+2(x2+1)(x2+2)=Ax+Bx2+1+Cx+Dx2+2(3)\frac{x^{3} +x^{2} +x+2}{\left( x^{2} +1\right)\left( x^{2} +2\right)} =\frac{Ax+B}{x^{2} +1} +\frac{Cx+D}{x^{2} +2} \tag{3}

    Multiplying equation (3) with (x2+1)(x2+2)\left( x^{2} +1\right)\left( x^{2} +2\right),

    [b]x3+x2+x+2=(Ax+B)(x2+2)+(Cx+D)(x2+1)=Ax3+2Ax+Bx2+2B+Cx3+Cx+Dx2+D=(A+C)x3+(B+D)x2+(2A+C)x+(2B+D)(4)\begin{aligned}[b] x^{3} +x^{2} +x+2 & =( Ax+B)\left( x^{2} +2\right) +( Cx+D)\left( x^{2} +1\right)\\ & =Ax^{3} +2Ax+Bx^{2} +2B+Cx^{3} +Cx+Dx^{2} +D\\ & =( A+C) x^{3} +( B+D) x^{2} +( 2A+C) x+( 2B+D) \end{aligned} \tag{4}

    Comparing LHS and RHS of equation (4),

    A+C=1B+D=12A+C=12B+D=2(5)\begin{aligned} A+C & =1\\ B+D & =1\\ 2A+C & =1\\ 2B+D & =2 \end{aligned} \tag{5}

    Solving equation (5) simultaneously to obtain A=0A=0, B=1B=1, C=1C=1, D=0D=0

    Therefore,

    x3+x2+x+2(x2+1)(x2+2)dx=(1x2+1+xx2+2)dx=tan1x+12ln(x2+2)+C\begin{aligned} \int \frac{x^{3} +x^{2} +x+2}{\left( x^{2} +1\right)\left( x^{2} +2\right)} dx & =\int \left(\frac{1}{x^{2} +1} +\frac{x}{x^{2} +2}\right) dx\\ & =\tan^{-1} x+\frac{1}{2}\ln\left( x^{2} +2\right) +C \end{aligned}
  6. Find

    tan3(3x)sec4(3x)dx\int \tan ^{3}(3 x) \sec ^{4}(3 x) d x
    Solution
    tan3(3x) sec4(3x) dx=tan3(3x) (1+tan2(3x))sec2(3x) dx=tan3(3x)sec2(3x) dx+tan5(3x)sec2(3x) dx=1314tan4(3x)+1316tan6(3x)+C=112tan4(3x)+118tan6(3x)+C\begin{aligned} \int \tan^{3}( 3x) \ \sec^{4}( 3x) \ dx & =\int \tan^{3}( 3x) \ \left( 1+\tan^{2}( 3x)\right)\sec^{2}( 3x) \ dx\\ & =\int \tan^{3}( 3x)\sec^{2}( 3x) \ dx+\int \tan^{5}( 3x)\sec^{2}( 3x) \ dx\\ & =\frac{1}{3}\frac{1}{4}\tan^{4}( 3x) +\frac{1}{3}\frac{1}{6}\tan^{6}( 3x) +C\\ & =\frac{1}{12}\tan^{4}( 3x) +\frac{1}{18}\tan^{6}( 3x) +C \end{aligned}
  7. Find

    sin4(x)cos7(x)dx\int \sin ^{4}(x) \cos ^{7}(x) d x
    Solution

    Using trigonometry identity, sin2x+cos2x=1  cos2x=1sin2x\sin^{2} x+\cos^{2} x=1\ \Longrightarrow \ \cos^{2} x=1-\sin^{2} x

    sin4(x)cos7(x) dx=sin4(x)cos6(x)cos(x) dx=sin4(x)(1sin2(x))3cos(x) dx\begin{aligned} \int \sin^{4}( x)\cos^{7}( x) \ dx & =\int \sin^{4}( x)\cos^{6}( x)\cos( x) \ dx\\ & =\int \sin^{4}( x)\left( 1-sin^{2}( x)\right)^{3}\cos( x) \ dx \end{aligned}

    Let u=sinxu=\sin x, du=cos(x) dxdu=\cos( x) \ dx,

    sin4(x)cos7(x) dx=u4(1u2)3  du=u4(1u2)(1u2)2du=u4(1u2)(12u2+u4)du=u4(12u2+u4u2+2u4u6)du=u4(13u2+3u4u6)du=u43u6+3u8u10du=15u537u7+39u9111u11+C\begin{aligned} \int \sin^{4}( x)\cos^{7}( x) \ dx & =\int u^{4}\left( 1-u^{2}\right)^{3} \ \ du\\ & =\int u^{4}\left( 1-u^{2}\right)\left( 1-u^{2}\right)^{2} du\\ & =\int u^{4}\left( 1-u^{2}\right)\left( 1-2u^{2} +u^{4}\right) du\\ & =\int u^{4}\left( 1-2u^{2} +u^{4} -u^{2} +2u^{4} -u^{6}\right) du\\ & =\int u^{4}\left( 1-3u^{2} +3u^{4} -u^{6}\right) du\\ & =\int u^{4} -3u^{6} +3u^{8} -u^{10} du\\ & =\frac{1}{5} u^{5} -\frac{3}{7} u^{7} +\frac{3}{9} u^{9} -\frac{1}{11} u^{11} +C \end{aligned}

    Substituting back u=sinxu=\sin x,

    sin4(x)cos7(x) dx=15sin5x37sin7x+13sin9x111sin11x+C\int \sin^{4}( x)\cos^{7}( x) \ dx=\frac{1}{5}\sin^{5} x-\frac{3}{7}\sin^{7} x+\frac{1}{3}\sin^{9} x-\frac{1}{11}\sin^{11} x+C
  8. Find

    dxx29x2\int \frac{d x}{x^{2} \sqrt{9-x^{2}}}
    Solution

    Let x=3sinθx=3\sin \theta, therefore θ=sin1x3\theta =\sin^{-1}\frac{x}{3}. Then, dx=3cosθ dθdx=3\cos \theta \ d\theta, and

    9x2=9(3sinθ)2=99sin2θ=31sin2θ=3cos2θ=3cosθ\begin{aligned} \sqrt{9-x^{2}} & =\sqrt{9-( 3\sin \theta )^{2}}\\ & =\sqrt{9-9\sin^{2} \theta }\\ & =3\sqrt{1-\sin^{2} \theta }\\ & =3\sqrt{\cos^{2} \theta }\\ & =3\cos \theta \end{aligned}

    Using defination of inverse sine, π2<θ<π2-\frac{\pi }{2} < \theta < \frac{\pi }{2}. Therefore, cosθ>0\cos \theta >0.

    Thus, cosθ=cosθ=9x23\displaystyle\cos \theta =\vert \cos \theta \vert =\frac{\sqrt{9-x^{2}}}{3}.

    Hence,

    dxx29x2 =3cosθ dθ9sin2θ(3cosθ)=19csc2θ dθ=19cotθ+C=19cosθsinθ+C=199x23x3+C=199x2x+C\begin{aligned} \int \frac{dx}{x^{2}\sqrt{9-x^{2}}} \ & =\int \frac{3\cos \theta \ d\theta }{9\sin^{2} \theta ( 3\cos \theta )}\\ & =\frac{1}{9}\int \csc^{2} \theta \ d\theta \\ & =-\frac{1}{9}\cot \theta +C\\ & =-\frac{1}{9}\frac{\cos \theta }{\sin \theta } +C\\ & =-\frac{1}{9}\frac{\frac{\sqrt{9-x^{2}}}{3}}{\frac{x}{3}} +C\\ & =-\frac{1}{9}\frac{\sqrt{9-x^{2}}}{x} +C \end{aligned}

Additional exercises

Please integrate

  1. x+7x2(x+2)dx\displaystyle\int \frac{x+7}{x^{2}(x+2)} d x

    Solution

    Decompose into partial fractions (There is a repeated linear factor!), getting

    x+7x2(x+2)dx=(Ax+Bx2+Cx+2)dx\int \frac{x+7}{x^2(x+2)} d x=\int\left(\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+2}\right) d x

    After getting a common denominator, adding fractions, and equating numerators, it follows that Ax(x+2)+B(x+2)+Cx2=x+7A x(x+2)+B(x+2)+C x^2=x+7;

    let x=0:A(0)+B(2)+C(0)=7B=72x=0: A(0)+B(2)+C(0)=7 \longrightarrow B=\frac{7}{2};

    let x=2:A(0)+B(0)+C(4)=5C=54x=-2: A(0)+B(0)+C(4)=5 \longrightarrow C=\frac{5}{4};

    let x=1:A(1)+B(1)+C(1)=A+72+54=6A=54x=-1: A(-1)+B(1)+C(1)=-A+\frac{7}{2}+\frac{5}{4}=6 \longrightarrow A=-\frac{5}{4}.

    x+7x2(x+2)dx=(5/4x+7/2x2+5/4x+2)dx=((5/4)1x+(7/2)x2+(5/4)1x+2)dx=(5/4)lnx+(7/2)x1(1)+(5/4)lnx+2+C=54lnx72x+54lnx+2+C\begin{aligned} \int \frac{x+7}{x^{2}(x+2)} d x&=\int\left(\frac{-5 / 4}{x}+\frac{7 / 2}{x^2}+\frac{5 / 4}{x+2}\right) d x \\ &=\int\left(-(5 / 4) \frac{1}{x}+(7 / 2) x^{-2}+(5 / 4) \frac{1}{x+2}\right) d x \\ &=-(5 / 4) \ln |x|+(7 / 2) \frac{x^{-1}}{(-1)}+(5 / 4) \ln |x+2|+C \\ &=-\frac{5}{4} \ln |x|-\frac{7}{2 x}+\frac{5}{4} \ln |x+2|+C \end{aligned}
  2. cosxsin3x+sinxdx\displaystyle\int \frac{\cos x}{\sin ^{3} x+\sin x} d x

    Solution

    Use the method of u-substitution first. Let u=sinxu=\sin x so that du=cosxdxd u=\cos x d x.

    Substitute into the original problem, replacing all forms of xx, getting

    cosxsin3x+sinxdx=1sin3x+sinxcosxdx=1u3+udu\begin{aligned} \int \frac{\cos x}{\sin ^3 x+\sin x} d x&=\int \frac{1}{\sin ^3 x+\sin x} \cos x d x \\ &=\int \frac{1}{u^3+u} d u \end{aligned}

    Factor and decompose into partial fractions.

    =1u(u2+1)du=(Au+Bu+Cu2+1)du\begin{aligned} &=\int \frac{1}{u\left(u^2+1\right)} d u \\ &=\int\left(\frac{A}{u}+\frac{B u+C}{u^2+1}\right) d u \end{aligned}

    After getting a common denominator, adding fractions, and equating numerators, it follows that A(u2+1)+(Bu+C)u=1A\left(u^2+1\right)+(B u+C) u=1;

    let u=0:A(1)+0=1A=1u=0: A(1)+0=1 \longrightarrow A=1;

    let u=i:A(i2+1)+(Bi+C)i=A(0)+Bi2+Ci=B+Ci=1u=i: A\left(i^2+1\right)+(B i+C) i=A(0)+B i^2+C i=-B+C i=1;

    it follows that B=1B=-1 and C=0C=0.

    =(1u+uu2+1)du=lnu12lnu2+1+C=lnsinx12lnsin2x+1+C\begin{aligned} &=\int\left(\frac{1}{u}+\frac{-u}{u^2+1}\right) d u \\ &=\ln |u|-\frac{1}{2} \ln \left|u^2+1\right|+C \\ &=\ln |\sin x|-\frac{1}{2} \ln \left|\sin ^2 x+1\right|+C \end{aligned}