Skip to main content

Tutorial 2

Tutorial 2: Partial Derivatives Engineering Applications of Partial Derivatives

Tutorial QuestionTutorial Solution
  1. Find the partial derivative (fy)\displaystyle\left(\frac{\partial f}{\partial y}\right) and (fx)\displaystyle\left(\frac{\partial f}{\partial x}\right) of these functions using the limit definition

    a. f(x,y)=x2y+2x+y3f(x, y)=x^{2} y+2 x+y^{3}

    Solution
    fx(x,y)=limh0f(x+h,y)f(x,y)h=limh0(x+h)2y+2(x+h)+y3(x2y+2x+y3)h=limh0x2y+2xhy+h2y+2x+2h+y3(x2y+2x+y3)h=limh02xhy+h2y+2hh=limh02xy+hy+2=2xy+2fy(x,y)=limh0f(x,y+h)f(x,y)h=limh0x2(y+h)+2x+(y+h)3x2y2xy3h=limh0x2y+x2h+2x+y3+3y2h+3yh2+h3x2y2xy3h=limh0x2h+3y2h+3yh2+h3h=limh0x2+3y2+3yh+h2=x2+3y2\begin{aligned} f_{x}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{(x+h)^{2} y+2(x+h)+y^{3}-\left(x^{2} y+2 x+y^{3}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2} y+2 x h y+h^{2} y+2 x+2 h+y^{3}-\left(x^{2} y+2 x+y^{3}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{2 x h y+h^{2} y+2 h}{h} \\ &=\lim _{h \rightarrow 0} 2 x y+h y+2 \\ &=2 x y+2 \\ f_{y}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}(y+h)+2 x+(y+h)^{3}-x^{2} y-2 x-y^{3}}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2} y+x^{2} h+2 x+y^{3}+3 y^{2} h+3 y h^{2}+h^{3}-x^{2} y-2 x-y^{3}}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2} h+3 y^{2} h+3 y h^{2}+h^{3}}{h} \\ &=\lim _{h \rightarrow 0} x^{2}+3 y^{2}+3 y h+h^{2} \\ &=x^{2}+3 y^{2} \end{aligned}

    b. f(x,y)=x24xy+y2f(x, y)=x^{2}-4 x y+y^{2}

    Solution

    Using the definition,

    fx(x,y)=limh0f(x+h,y)f(x,y)h=limh0(x+h)24(x+h)y+y2(x24xy+y2)h=limh0x2+2xh+h24xy4hy+y2(x24xy+y2)h=limh02xh+h24hyh=limh0(2x+h4y)=2x4y\begin{aligned} f_{x}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-4(x+h) y+y^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-4 x y-4 h y+y^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-4 h y}{h} \\ &=\lim _{h \rightarrow 0}(2 x+h-4 y) \\ &=2 x-4 y \end{aligned}

    Similarly,

    fy(x,y)=limh0f(x,y+h)f(x,y)h=limh0x24x(y+h)+(y+h)2(x24xy+y2)h=limh0x24xy4xh+y2+2yh+h2(x24xy+y2)h=limh04xh+2yh+h2h=limh0(4x+2y+h)=4x+2y\begin{aligned} f_{y}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}-4 x(y+h)+(y+h)^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}-4 x y-4 x h+y^{2}+2 y h+h^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{-4 x h+2 y h+h^{2}}{h} \\ &=\lim _{h \rightarrow 0}(-4 x+2 y+h) \\ &=-4 x+2 y \end{aligned}

    c. f(x,y)=2x3+3xyy2f(x, y)=2 x^{3}+3 x y-y^{2}

    Solution
    fx=limh0f(x+h,y)f(x,y)h=limh0h(6x2+6xh+2h2+3y)h=limh0(6x2+6xh+2h2+3y)=6x2+3yfy=limh0f(x,y+h)f(x,y)h=limh0h(3x2yh)h=limh0(3x2yh)=3x2y\begin{aligned} \frac{\partial f}{\partial x} &= \lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{h\left(6 x^{2}+6 x h+2 h^{2}+3 y\right)}{h} \\ &=\lim _{h \rightarrow 0}\left(6 x^{2}+6 x h+2 h^{2}+3 y\right) \\ &=6 x^{2}+3 y \\ \frac{\partial f}{\partial y} &= \lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{h(3 x-2 y-h)}{h} \\ &=\lim _{h \rightarrow 0}(3 x-2 y-h) \\ &=3 x-2 y \end{aligned}
  2. Determine all the first and second order partial derivatives of the function

    a. f(x,y)=x2y3+3y+xf(x, y)=x^{2} y^{3}+3 y+x

    Solution
    fx=2xy3+1fy=3x2y2+3x(fx)=2y3y(fx)=6xy2x(fy)=6xy2y(fy)=6x2y\begin{aligned} \frac{\partial f}{\partial x}&= 2xy^3+1 \\ \frac{\partial f}{\partial y}&= 3x^2y^2+3 \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= 2y^3 \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= 6xy^2 \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= 6xy^2 \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= 6x^2y \\ \end{aligned}

    b. f(x,y)=x4sin3yf(x, y)=x^{4} \sin 3 y

    Solution
    fx=4x3sin3yfy=3x4cos3yx(fx)=12x2sin3yy(fx)=12x3cos3yx(fy)=12x3cos3yy(fy)=9x4sin3y\begin{aligned} \frac{\partial f}{\partial x}&= 4x^3\sin{3y} \\ \frac{\partial f}{\partial y}&= 3x^4\cos{3y} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= 12x^2\sin{3y} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= 12x^3\cos{3y} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= 12x^3\cos{3y} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= -9x^4\sin{3y} \\ \end{aligned}

    c. f(x,y)=x2y+ln(y2x)f(x, y)=x^{2} y+\ln \left(y^{2}-x\right)

    Solution
    fx=2xy1y2xfy=x2+2yy2xx(fx)=2y1(y2x)2y(fx)=2x+2y(y2x)2x(fy)=2x+2y(y2x)2y(fy)=2y22x(y2x)2\begin{aligned} \frac{\partial f}{\partial x}&= 2xy-\frac{1}{y^2-x} \\ \frac{\partial f}{\partial y}&= x^2+\frac{2y}{y^2-x} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= 2y-\frac{1}{(y^2-x)^2} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= 2x+\frac{2y}{(y^2-x)^2} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= 2x+\frac{2y}{(y^2-x)^2} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= \frac{-2y^2-2x}{(y^2-x)^2} \\ \end{aligned}

    d. f(x,y)=exy(2xy)f(x, y)=e^{x y}(2 x-y)

    Solution
    fx=exy(2xyy2+2)fy=exy(2x2xy1)x(fx)=exy(2xy2y3+4y)y(fx)=exy(2x3yxy2+4x2y)x(fy)=exy(2x2yxy2+4x2y)y(fy)=exy(2x3x2y2x)\begin{aligned} \frac{\partial f}{\partial x}&= e^{xy}(2xy-y^2+2) \\ \frac{\partial f}{\partial y}&= e^{xy}(2x^2-xy-1) \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= e^{xy}(2xy^2-y^3+4y) \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= e^{xy}(2x^3y-xy^2+4x-2y) \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= e^{xy}(2x^2y-xy^2+4x-2y) \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= e^{xy}(2x^3-x^2y-2x)\\ \end{aligned}
  3. Find both partial derivatives for each of the following two variables functions

    a. g(x,y)=yex+yg(x, y)=y e^{x+y}

    Solution
    g(x,y)=yex+ygx(x,y)=yex+ygy(x,y)=ex+y+yex+y\begin{aligned} g(x, y)=& y e^{x+y} \\ g_{x}(x, y) &=y e^{x+y} \\ g_{y}(x, y) &=e^{x+y}+y e^{x+y} \end{aligned}

    b. h(x,y)=xsinyycosxh(x, y)=x \sin y-y \cos x

    Solution
    h(x,y)=xsinyycosxhx(x,y)=siny+ysinxhy(x,y)=xcosycosx\begin{aligned} &h(x, y)=x \sin y-y \cos x \\ &h_{x}(x, y)=\sin y+y \sin x \\ &h_{y}(x, y)=x \cos y-\cos x \end{aligned}

    c. p(x,y)=xy+y2p(x, y)=x^{y}+y^{2}

    Solution
    p(x,y)=xy+y2px(x,y)=yxy1py(x,y)=xylnx+2y\begin{aligned} p(x, y)=& x^{y}+y^{2} \\ p_{x}(x, y) &=y x^{y-1} \\ p_{y}(x, y) &=x^{y} \ln x+2 y \end{aligned}

    d. U(x,y)=9y3xyU(x, y)=\frac{9 y^{3}}{x-y}

    Solution
    Ux=Ux=(xy)(0)9y3(1)(xy)2=9y3(xy)2Uy=Uy=(xy)(27y2)9y3(1)(xy)2=27xy218y3(xy)2\begin{aligned} &\frac{\partial U}{\partial x}=U_{x}=\frac{(x-y)(0)-9 y^{3}(1)}{(x-y)^{2}}=\frac{-9 y^{3}}{(x-y)^{2}} \\ &\frac{\partial U}{\partial y}=U_{y}=\frac{(x-y)\left(27 y^{2}\right)-9 y^{3}(-1)}{(x-y)^{2}}=\frac{27 x y^{2}-18 y^{3}}{(x-y)^{2}} \end{aligned}
  4. For f(x,y,z)f(x, y, z), use the implicit function theorem to find dy/dxd y / d x and dy/dzd y / d z

    a. f(x,y,z)=x2y3+z2+xyzf(x, y, z)=x^{2} y^{3}+z^{2}+x y z

    Solution
    f(x,y,z)=x2y3+z2+xyzdydx=fxfy=2xy3+yz3x2y2+xzdydz=fzfy=2z+xy3x2y2+xz\begin{gathered} f(x, y, z)=x^{2} y^{3}+z^{2}+x y z \\ \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{2 x y^{3}+y z}{3 x^{2} y^{2}+x z} \\ \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 z+x y}{3 x^{2} y^{2}+x z} \end{gathered}

    b. f(x,y,z)=x3z2+y3+4xyzf(x, y, z)=x^{3} z^{2}+y^{3}+4 x y z

    Solution
    f(x,y,z)=x3z2+y3+4xyzdydx=fxfy=3x2z2+4yz3y2+4xzdydz=fzfy=2x3z+4xy3y2+4xz\begin{gathered} f(x, y, z)=x^{3} z^{2}+y^{3}+4 x y z \\ \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{3 x^{2} z^{2}+4 y z}{3 y^{2}+4 x z} \\ \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 x^{3} z+4 x y}{3 y^{2}+4 x z} \end{gathered}

    c. f(x,y,z)=3x2y3+xz2y2+y3zx4+y2zf(x, y, z)=3 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z

    Solution
    f(x,y,z)=3x2y3+xz2y2+y3zx4+y2zdydx=fxfy=6xy3+z2y2+4y3zx39x2y2+2xz2y+3y2zx4+2yzdydz=fzfy=2xzy2+y3x4+y29x2y2+2xz2y+3y2zx4+2yz\begin{gathered} f(x, y, z)=3 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z \\ \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{6 x y^{3}+z^{2} y^{2}+4 y^{3} z x^{3}}{9 x^{2} y^{2}+2 x z^{2} y+3 y^{2} z x^{4}+2 y z} \\ \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 x z y^{2}+y^{3} x^{4}+y^{2}}{9 x^{2} y^{2}+2 x z^{2} y+3 y^{2} z x^{4}+2 y z} \end{gathered}
  5. Find Fs\frac{\partial F}{\partial s} and Ft\frac{\partial F}{\partial t}, if applicable, for the following composite functions

    a. F=sin(x+y)F=\sin (x+y) where x=2stx=2st and y=s2+t2y=s^2+t^2

    Solution
    Fs=Fxxs+Fyys=cos(x+y)(2t)+cos(x+y)(2s)=2tcos(2st+s2+t2)+2scos(st+s2+t2)=2cos((s+t)2)(s+t)\begin{aligned} \frac{\partial F}{\partial s}&=\frac{\partial F}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial s} \\ &=\cos (x+y)(2t)+\cos (x+y)(2s) \\ &=2t\cos (2st+s^2+t^2)+2s\cos (st+s^2+t^2) \\ &= 2\cos ((s+t)^2)(s+t) \end{aligned}
    Ft=Fxxt+Fyyt=cos(x+y)(2s)+cos(x+y)(2t)=2cos((s+t)2)(s+t)\begin{aligned} \frac{\partial F}{\partial t}&=\frac{\partial F}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial t} \\ &=\cos (x+y)(2s)+\cos (x+y)(2t) \\ &= 2\cos ((s+t)^2)(s+t) \end{aligned}

    b. F=ln(x2+y)F=\ln \left(x^{2}+y\right) where x=e(s+t2)x=\mathrm{e}^{(s+t 2)} and y=s2+ty=s^{2}+t

    Solution
    Fs=Fxxs+Fyys=2xx2+yes+t2+1x2+y2s=2x2+y(xes+t2+s)\begin{aligned} \frac{\partial F}{\partial s} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial s} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial s}\\ & =\frac{2x}{x^{2} +y} e^{s+t^{2}} +\frac{1}{x^{2} +y} 2s\\ & =\frac{2}{x^{2} +y}\left( xe^{s+t^{2}} +s\right) \end{aligned}
    Ft=Fxxt+Fyyt=2xx2+y2tes+t2+1x2+y(1)=1x2+y(4xtes+t2+1)\begin{aligned} \frac{\partial F}{\partial t} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial t} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial t}\\ & =\frac{2x}{x^{2} +y} 2te^{s+t^{2}} +\frac{1}{x^{2} +y}( 1)\\ & =\frac{1}{x^{2} +y}\left( 4xte^{s+t^{2}} +1\right) \end{aligned}

    c. F=x2y2F=x^{2} y^{2} where x=scostx=s \cos t and y=ssinty=s \sin t

    Solution
    Fs=Fxxs+Fyys=2xy2cost+2x2ysint=2(scost)(s2sin2t)(cost)+2(s2cos2t)(ssint)(sint)=2s3cos2tsin2t+2s3cos2tsin2t=4s3cos2tsin2t=4s3(costsint)2=4s3(12sin2t)2=s3(sin2t)2\begin{aligned} \frac{\partial F}{\partial s} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial s} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial s}\\ & =2xy^{2}\cos t+2x^{2} y\sin t\\ & =2( s\cos t)\left( s^{2}\sin^{2} t\right)(\cos t) +2\left( s^{2}\cos^{2} t\right)( s\sin t)(\sin t)\\ & =2s^{3}\cos^{2} t\sin^{2} t+2s^{3}\cos^{2} t\sin^{2} t\\ & =4s^{3}\cos^{2} t\sin^{2} t\\ & =4s^{3}(\cos t\sin t)^{2}\\ & =4s^{3}\left(\frac{1}{2}\sin 2t\right)^{2}\\ & =s^{3}(\sin 2t)^{2} \end{aligned}
    Ft=Fxxt+Fyyt=2xy2(ssint)+2x2y(scost)=2x2yscost2xy2ssint=2(s2cos2t)(ssint)scost2(scost)(s2sin2t)ssint=2s4cos3tsint2s4costsin3t=2s4(costsint)(cos2tsin2t)=2s4(12sin2t)(cos2t)=s4sin2tcos2t\begin{aligned} \frac{\partial F}{\partial t} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial t} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial t}\\ & =2xy^{2}( -s\sin t) +2x^{2} y( s\cos t)\\ & =2x^{2} ys\cos t-2xy^{2} s\sin t\\ & =2\left( s^{2}\cos^{2} t\right)( s\sin t) s\cos t-2( s\cos t)\left( s^{2}\sin^{2} t\right) s\sin t\\ & =2s^{4}\cos^{3} t\sin t-2s^{4}\cos t\sin^{3} t\\ & =2s^{4}(\cos t\sin t)\left(\cos^{2} t-\sin^{2} t\right)\\ & =2s^{4}\left(\frac{1}{2}\sin 2t\right)(\cos 2t)\\ & =s^{4}\sin 2t\cos 2t \end{aligned}

    d. F=xy+yz2F=xy+y \mathrm{z}^{2} where x=et,y=etsintx=\mathrm{e}^{t}, y=\mathrm{e}^{t} \sin t and z=etcost\mathrm{z}=\mathrm{e}^{t} \cos t

    Solution
    dFdt=Fxxt+Fyyt+Fzzt=yet+(x+z2)(etcost+sintet)+2yz(etsint+costet)=yet+xetcost+xsintet+z2etcost+z2sintet2yzetsint+2yzcostet=yet+etcost(x+z2+2yz)+etsint(x+z22yz)=etsintet+etcost(et+e2tcost+2e2tsintcost)     +etsint(et+e2tcos2t2e2tsintcost)=e2tsint+e2tcost+e3tcos3t+2e2tsintcos2t+e2tsint+e3tsintcos2t     2e3tsin2tcost=2e2tsint+e2tcost+e3tcos3t+3e3tsintcos2t2e3tsin2tcost=e2t(2sint+cost)+e3t(cos3t+3sintcos2t2sin2tcost)\begin{aligned} \frac{dF}{dt} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial t} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial t} +\frac{\partial F}{\partial z}\frac{\partial z}{\partial t}\\ & =ye^{t} +\left( x+z^{2}\right)\left( e^{t}\cos t+\sin^{t} e^{t}\right) +2yz\left( -e^{t}\sin t+\cos te^{t}\right)\\ & =ye^{t} +xe^{t}\cos t+x\sin^{t} e^{t} +z^{2} e^{t}\cos t+z^{2}\sin te^{t} -2yze^{t}\sin t+2yz\cos te^{t}\\ & =ye^{t} +e^{t}\cos t\left( x+z^{2} +2yz\right) +e^{t}\sin t\left( x+z^{2} -2yz\right)\\ & =e^{t}\sin t\cdot e^{t} +e^{t}\cos t\left( e^{t} +e^{2t}\cos t+2e^{2t}\sin t\cos t\right)\\ & \ \ \ \ \ +e^{t}\sin t\left( e^{t} +e^{2t}\cos^{2} t-2e^{2t}\sin t\cos t\right)\\ & =e^{2t}\sin t+e^{2t}\cos t+e^{3t}\cos^{3} t+2e^{2t}\sin t\cos^{2} t+e^{2t}\sin t+e^{3t}\sin t\cos^{2} t\\ & \ \ \ \ \ -2e^{3} t\sin^{2} t\cos t\\ & =2e^{2t}\sin t+e^{2t}\cos t+e^{3t}\cos^{3} t+3e^{3t}\sin t\cos^{2} t-2e^{3t}\sin^{2} t\cos t\\ & =e^{2t}( 2\sin t+\cos t) +e^{3t}\left(\cos^{3} t+3\sin t\cos^{2} t-2\sin^{2} t\cos t\right) \end{aligned}
  6. Find dy/dxd y / d x and dy/dzd y / d z (if applicable) for each of the following

    a. 7x2+2xy2+9y4=07 x^{2}+2 x y^{2}+9 y^{4}=0

    Solution
    dydx=FxFy=14x+2y236y2+4xy\begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{14x+2y^{2}}{36y^{2} +4xy} \end{aligned}

    b. x3z2+y3+4xyz=0x^{3} z^{2}+y^{3}+4 x y z=0

    Solution
    dydx=FxFy=3x2z2+4yz3y2+4xzdydz=FzFy=2x3z+4xy3y2+4xz\begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{3x^{2} z^{2} +4yz}{3y^{2} +4xz}\\ \frac{dy}{dz} & =-\frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial y}} =-\frac{2x^{3} z+4xy}{3y^{2} +4xz} \end{aligned}

    c. 3x2y3+xz2y2+y3zx4+y2z=03 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z=0

    Solution
    dydx=FxFy=6xy3+z2y2+4y3zx39x2y2+2xz2y+3y2zx4+2yzdydz=FzFy=2xzy2+y3x4+y29x2y2+2xz2y+3yzx4+2yz\begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{6xy^{3} +z^{2} y^{2} +4y^{3} zx^{3}}{9x^{2} y^{2} +2xz^{2} y+3y^{2} zx^{4} +2yz}\\ \frac{dy}{dz} & =-\frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial y}} =-\frac{2xzy^{2} +y^{3} x^{4} +y^{2}}{9x^{2} y^{2} +2xz^{2} y+3y^{z} x^{4} +2yz} \end{aligned}

    d. y5+x2y3=1+yexp(x2)y^{5}+x^{2} y^{3}=1+y \exp \left(x^{2}\right)

    Solution
    dydx=FxFy=2xy(y2ex2)5y4+3x2y2ex2\begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{2xy\left( y^{2} -e^{x^{2}}\right)}{5y^{4} +3x^{2} y^{2} -e^{x^{2}}} \end{aligned}
  7. a. In polar coordinates, x=rcosθ,y=rsinθx=r \cos \theta, y=r \sin \theta, show that (x,y)(r,θ)=r\frac{\partial(x, y)}{\partial(r, \theta)}=r

    Solution
     For x=rcosθ,xr=cosθ,xθ=rsinθy=rsinθ,yr=sinθ,yθ=rcosθ(x,y)(r,θ)=xrxθyryθ=cosθrsinθsinθrcosθ=r.\begin{aligned} & \text { For } x=r \cos \theta, \frac{\partial x}{\partial r}=\cos \theta, \frac{\partial x}{\partial \theta}=-r \sin \theta \\ & y=r \sin \theta, \frac{\partial y}{\partial r}=\sin \theta, \frac{\partial y}{\partial \theta}=r \cos \theta \\ & \therefore \quad \frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right|=\left|\begin{array}{cc}\cos \theta & -r \sin \theta \\\sin \theta & r \cos \theta\end{array}\right|=r . \end{aligned}

    b. Obtain the Jacobian JJ of the transformation s=2x+y,t=x2ys=2 x+y, t=x-2 y and determine the inverse of the transformation J1J_{1}. Confirm that J1=J1J_{1}=J^{-1}.

    Solution
    J=(s,t)(x,y)=2112=5\begin{aligned} J & =\frac{\partial ( s,t)}{\partial ( x,y)}\\ & =\left| \begin{matrix} 2 & 1\\ 1 & -2 \end{matrix}\right| \\ & =-5 \end{aligned}
    x=15(2s+t)y=15(s2t)J1=(x,y)(s,t)=25151525=15\begin{array}{l} x=\frac{1}{5}( 2s+t) \quad \quad y=\frac{1}{5}( s-2t)\\ \\ \begin{aligned} J_{1} & =\frac{\partial ( x,y)}{\partial ( s,t)}\\ & =\left| \begin{matrix} \frac{2}{5} & \frac{1}{5}\\ \frac{1}{5} & -\frac{2}{5} \end{matrix}\right| \\ & =-\frac{1}{5} \end{aligned} \end{array}
    J1=J1\therefore J_{1} =J^{-1}

    c. Show that if x+y=ux+y=\mathrm{u} and y=uvy=\mathrm{uv}, then (x,y)(u,v)=u\frac{\partial(x, y)}{\partial(u, v)}=u.

    Solution
    x+uv=ux=uuvdxdu=1vdxdv=1\begin{array}{l} x+uv=u\Longrightarrow x=u-uv\\ \frac{dx}{du} =1-v\\ \frac{dx}{dv} =-1 \end{array}
    y=uvdydu=vdydv=u\begin{array}{l} y=uv\\ \frac{dy}{du} =v\\ \frac{dy}{dv} =u \end{array}
    (x,y)(u,v)=xuyuxvyv=1vvuu=uuv+uv=u \begin{aligned} \frac{\partial ( x,y)}{\partial ( u,v)} & =\left| \begin{matrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u}\\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{matrix}\right| \\ & =\left| \begin{matrix} 1-v & v\\ -u & u \end{matrix}\right| \\ & =u-uv+uv\\ & =u\ \end{aligned}

    d. Verify whether the functions u=x+y1xyu=\frac{x+y}{1-x y} and v=tan1x+tan1yv=\tan ^{-1} x+\tan ^{-1} y are functionally dependent.

    Solution
    (u,v)(x,y)=uxuyvxvy=1+y2(1xy)21+x2(1xy)211+x211+y2=1(1xy)21(1xy)2=0\begin{aligned} \frac{\partial ( u,v)}{\partial ( x,y)} & =\left| \begin{matrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{matrix}\right| =\left| \begin{matrix} \frac{1+y^{2}}{( 1-xy)^{2}} & \frac{1+x^{2}}{( 1-xy)^{2}}\\ \frac{1}{1+x^{2}} & \frac{1}{1+y^{2}} \end{matrix}\right| \\ & =\frac{1}{( 1-xy)^{2}} -\frac{1}{( 1-xy)^{2}}\\ & =0 \end{aligned}

    e. If x=uv,u+vuvx=\mathrm{uv}, \frac{u+v}{u-v}, find (u,v)(x,y)\frac{\partial(u, v)}{\partial(x, y)}.

    Solution
    (x,y)(u,v)=xuyuxvyv=vu2v(uv)22u(uv)2=2uv(uv)2+2uv(uv)2=4uv(uv)2(u,v)(x,y)=(uv)24uv\begin{aligned} \frac{\partial ( x,y)}{\partial ( u,v)} & =\left| \begin{matrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u}\\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{matrix}\right| =\left| \begin{matrix} v & u\\ -\frac{2v}{( u-v)^{2}} & -\frac{2u}{( u-v)^{2}} \end{matrix}\right| \\ & =\frac{2uv}{( u-v)^{2}} +\frac{2uv}{( u-v)^{2}}\\ & =\frac{4uv}{( u-v)^{2}}\\ \frac{\partial ( u,v)}{\partial ( x,y)} & =\frac{( u-v)^{2}}{4uv} \end{aligned}
  8. a. How sensitive is the volume V=πr2hV=\pi r^{2} h of a right circular cylinder to small changes in its radius and height near the point (r0,h0)=(1,3)\left(r_{0}, h_{0}\right)=(1,3)?

    Solution
    Figure for Answer 8a

    By increment method, we get

    ΔV(Vr)(r0,h0)Δr+(Vh)(r0,h0)Δh=Vr(1,3)Δr+Vh(1,3)Δh=(2πrh)(1,3)Δr+(πr2)(1,3)Δh=6πΔr+πΔh\begin{aligned} \Delta V & \approx\left(\frac{\partial V}{\partial r}\right)_{\left(r_{0}, h_{0}\right)} \Delta r+\left(\frac{\partial V}{\partial h}\right)_{\left(r_{0}, h_{0}\right)} \Delta h \\ &=V_{r}(1,3) \Delta r+V_{h}(1,3) \Delta h \\ &=(2 \pi r h)_{(1,3)} \Delta r+\left(\pi r^{2}\right)_{(1,3)} \cdot \Delta h \\ &=6 \pi \cdot \Delta r+\pi \cdot \Delta h \end{aligned}

    The above result shows that a one-unit change in rr will change VV nearly by π\pi units and a one-unit change in hh will change VV nearly by 6π6 \pi units. Therefore, the volume of a cylinder with radius r=1r=1 and height h=3h=3 is nearly 6 times as sensitive to small change in rr as it is to small change in hh Fig. 4.3(i).

    In contrast, if value of rr and hh are reversed, so that r=3r=3 and h=1h=1, then ΔV6πΔr+9π\Delta V \approx 6 \pi \cdot \Delta r+9 \pi. Δh\Delta h. The volume is now more sensitive to small change in hh to that it is to change in rr. Thus the sensitivity to change depends not only on the increment but also on the relative size of rr and hh (See Fig. 4.3 (ii)).

    b. If rr is measured with an accuracy of ±1%\pm 1 \% and hh with an accuracy of ±0.5%\pm 0.5 \%, about how accurately can VV be calculated from the formula V=πr2hV=\pi r^{2} h ?

    Solution

    For V=πr2hV=\pi r^{2} h or logV=logπ+2logr+logh\log V=\log \pi+2 \log r+\log h, increment approximation implies

    ΔVV2Δrr+Δhh.\frac{\Delta V}{V} \approx 2 \frac{\Delta r}{r}+\frac{\Delta h}{h} .

    Given, Δrr×100=±1,Δhh×100=±0.5=12}\left.\quad \begin{array}{l}\frac{\Delta r}{r} \times 100=\pm 1, \\ \frac{\Delta h}{h} \times 100=\pm 0.5=\frac{1}{2}\end{array}\right\} so that Δrr1100Δhh1200}\left.\begin{array}{l}\left|\frac{\Delta r}{r}\right| \leq \frac{1}{100} \\ \left|\frac{\Delta h}{h}\right| \leq \frac{1}{200}\end{array}\right\}

    ΔVV2Δrr+Δhh2Δrr+Δhh=2100+1200=0.025\therefore\left|\frac{\Delta V}{V}\right| \approx\left|2 \frac{\Delta r}{r}+\frac{\Delta h}{h}\right| \leq 2\left|\frac{\Delta r}{r}\right|+\left|\frac{\Delta h}{h}\right|=\frac{2}{100}+\frac{1}{200}=0.025

    Thus, the maximum percentage error (or change), viz. ΔVV×100\left|\frac{\Delta V}{V}\right| \times 100, due to possible percentage error (or change) in measurement of rr and AA will be about 2.52.5 per cent.

    c. The period TT of a simple pendulum is T=2πlgT=2 \pi \sqrt{\frac{l}{g}}, find the maximum percentage error in TT due to possible errors up to 1%1 \% in ll and 2%2 \% in gg (Hint: dll=0.001\frac{d l}{l}=0.001 and dgg=0.002\frac{d g}{g}=0.002 )

    Solution
    logT=log2π+12logl12loggdTT=0+12ldl12gdg=(12)(dll)(12)(dgg)=(12)(0.001)±(12)(0.002)=0.0005±0.001\begin{aligned} \log T & =\log 2\pi +\frac{1}{2}\log l-\frac{1}{2}\log g\\ \frac{dT}{T} & =0+\frac{1}{2l} dl-\frac{1}{2g} dg\\ & =\left(\frac{1}{2}\right)\left(\frac{dl}{l}\right) -\left(\frac{1}{2}\right)\left(\frac{dg}{g}\right)\\ & =\left(\frac{1}{2}\right)( 0.001) \pm \left(\frac{1}{2}\right)( 0.002)\\ & =0.0005\pm 0.001 \end{aligned}
    Max error= 1.5%\therefore \text{Max error} =\ 1.5\%

    d. The range RR of a projectile which starts with a velocity vv at an elevation α\alpha is given by R=R= v2sin2αg\frac{v^{2} \sin 2 \alpha}{g}. Find the percentage error in RR due to an error of 1%1 \% in v\mathrm{v} and an error of 0.5%0.5 \% in α\alpha.

    Solution

    Given R=v2sin2αgR=\frac{v^{2} \sin 2 \alpha}{g} or logR=2logv+logsin2αlogg\log R=2 \log v+\log \sin 2 \alpha-\log g.

    By error approximation (i.e. taking differential on both sides)

    δRR=2δvv+1sin2αcos2α2δα,(δg=0)\frac{\delta R}{R}=2 \frac{\delta v}{v}+\frac{1}{\sin 2 \alpha} \cos 2 \alpha \cdot 2 \delta \alpha,(\delta g=0)

    or

    (δRR×100)=2(δvv×100)+2α(cot2α)(δαα×100)=2×1+2αcot2α×0.5=2+2αcot2α×12=(2+αcot2α)\begin{aligned} \left(\frac{\delta R}{R} \times 100\right) &=2\left(\frac{\delta v}{v} \times 100\right)+2 \alpha(\cot 2 \alpha)\left(\frac{\delta \alpha}{\alpha} \times 100\right) \\ &=2 \times 1+2 \alpha \cdot \cot 2 \alpha \times 0.5=2+2 \alpha \cot 2 \alpha \times \frac{1}{2} \\ &=(2+\alpha \cot 2 \alpha) \end{aligned}

    Hence, the percentage error in calculation of RR due to errors of 1%1 \% in RR and 0.5%0.5 \% in α\alpha is (2+αcot2α)(2+\alpha \cot 2 \alpha).

  9. Find the equations of the tangent plane and normal line to the following surfaces at the points indicated:

    a. x2+2y2+3z2=6x^{2}+2 y^{2}+3 z^{2}=6 at (1,1,1)(1,1,1)

    Solution

    Partial derivation yields:

    fx=2xfy=4yfz=6z\frac{\partial f}{\partial x} =2x\quad \quad \frac{\partial f}{\partial y} =4y\quad \quad \frac{\partial f}{\partial z} =6z

     fx(1,1,1)=2fy(1,1,1)=4fz(1,1,1)=6\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,1,1)} =2\quad \quad \frac{\partial f}{\partial y}_{( 1,1,1)} =4\quad \quad \frac{\partial f}{\partial z}_{( 1,1,1)} =6

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=02(x1)+4(y1)+6(z1)=02x2+4y4+6z6=0x+2y+3z=6\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x-1) +4( y-1) +6( z-1) & =0\\ 2x-2+4y-4+6z-6 & =0\\ x+2y+3z & =6 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x12=y14=z16x11=y12=z13\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{2} & =\frac{y-1}{4} =\frac{z-1}{6}\\ \frac{x-1}{1} & =\frac{y-1}{2} =\frac{z-1}{3} \end{aligned}

    b. 2x2+y2z2=32 x^{2}+y^{2}-z^{2}=-3 at (1,2,3)(1,2,3)

    Solution

    Partial derivation yields:

    fx=4xfy=2yfz=2z\frac{\partial f}{\partial x} =4x\quad \quad \frac{\partial f}{\partial y} =2y\quad \quad \frac{\partial f}{\partial z} =-2z

     fx(1,2,3)=4fy(1,2,3)=4fz(1,2,3)=6\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,2,3)} =4\quad \quad \frac{\partial f}{\partial y}_{( 1,2,3)} =4\quad \quad \frac{\partial f}{\partial z}_{( 1,2,3)} =-6

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=04(x1)+4(y2)6(z3)=04x4+4y86z+18=04x+4y6z=62x+2y3z=3\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 4( x-1) +4( y-2) -6( z-3) & =0\\ 4x-4+4y-8-6z+18 & =0\\ 4x+4y-6z & =-6\\ 2x+2y-3z & =-3 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x14=y24=z36x12=y22=z33\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{4} & =\frac{y-2}{4} =\frac{z-3}{-6}\\ \frac{x-1}{2} & =\frac{y-2}{2} =\frac{z-3}{-3} \end{aligned}

    c. x2+y2z=1x^{2}+y^{2}-z=1 at (1,2,4)(1,2,4)

    Solution

    Partial derivation yields:

    fx=2xfy=2yfz=1\frac{\partial f}{\partial x} =2x\quad \quad \frac{\partial f}{\partial y} =2y\quad \quad \frac{\partial f}{\partial z} =-1

     fx(1,2,4)=2fy(1,2,4)=4fz(1,2,4)=1\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,2,4)} =2\quad \quad \frac{\partial f}{\partial y}_{( 1,2,4)} =4\quad \quad \frac{\partial f}{\partial z}_{( 1,2,4)} =-1

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=02(x1)+4(y2)1(z4)=02x2+4y8z+4=02x+4yz=6\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x-1) +4( y-2) -1( z-4) & =0\\ 2x-2+4y-8-z+4 & =0\\ 2x+4y-z & =6 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x12=y24=z41\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{2} & =\frac{y-2}{4} =\frac{z-4}{-1} \end{aligned}

    d. ln(xy)z2(x2y)3z=3\displaystyle \ln \left(\frac{x}{y}\right)-z^{2}(x-2 y)-3 z=3 at (4,2,1)(4,2,-1)

    Solution

    Partial derivation yields:

    fx=1xz2fy=2z21yfz=2z(x2y)3\frac{\partial f}{\partial x} =\frac{1}{x} -z^{2} \quad \quad \frac{\partial f}{\partial y} =2z^{2} -\frac{1}{y} \quad \quad \frac{\partial f}{\partial z} =-2z( x-2y) -3

     fx(4,2,1)=34fy(4,2,1)=32fz(4,2,1)=3\Longrightarrow \ \frac{\partial f}{\partial x}_{( 4,2,-1)} =-\frac{3}{4} \quad \quad \frac{\partial f}{\partial y}_{( 4,2,-1)} =\frac{3}{2} \quad \quad \frac{\partial f}{\partial z}_{( 4,2,-1)} =-3

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=034(x4)+32(y2)3(z+1)=034x+3+32y33z3=034x+32y3z=3\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ -\frac{3}{4}( x-4) +\frac{3}{2}( y-2) -3( z+1) & =0\\ -\frac{3}{4} x+3+\frac{3}{2} y-3-3z-3 & =0\\ -\frac{3}{4} x+\frac{3}{2} y-3z & =3 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x434=y232=z+13\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-4}{-\frac{3}{4}} & =\frac{y-2}{\frac{3}{2}} =\frac{z+1}{-3} \end{aligned}

    e. x3z+z3x2yz=0x^{3} z+z^{3} x-2 y z=0 at (1,1,1)(1,1,1)

    Solution

    Partial derivation yields:

    fx=3x2z+z3fy=2zfz=x3+3z2x2y\frac{\partial f}{\partial x} =3x^{2} z+z^{3} \quad \quad \frac{\partial f}{\partial y} =-2z\quad \quad \frac{\partial f}{\partial z} =x^{3} +3z^{2} x-2y

     fx(1,1,1)=4fy(1,1,1)=2fz(1,1,1)=2\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,1,1)} =4\quad \quad \frac{\partial f}{\partial y}_{( 1,1,1)} =-2\quad \quad \frac{\partial f}{\partial z}_{( 1,1,1)} =2

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=04(x1)2(y1)+2(z1)=04x42y+2+2z2=04x2y+2z=42xy+z=2\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 4( x-1) -2( y-1) +2( z-1) & =0\\ 4x-4-2y+2+2z-2 & =0\\ 4x-2y+2z & =4\\ 2x-y+z & =2 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x14=y12=z12x12=y11=z11\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{4} & =\frac{y-1}{-2} =\frac{z-1}{2}\\ \frac{x-1}{2} & =\frac{y-1}{-1} =\frac{z-1}{1} \end{aligned}

    f. z=5+(x1)2+(y+2)2z=5+(x-1)^{2}+(y+2)^{2} at (2,0,10)(2,0,10)

    Solution

    z=5+(x1)2+(y+2)2(x1)2+(y+2)2z=5z=5+( x-1)^{2} +( y+2)^{2} \Longrightarrow ( x-1)^{2} +( y+2)^{2} -z=5

    Partial derivation yields:

    fx=2(x1)fy=2(y+2)fz=1\frac{\partial f}{\partial x} =2( x-1) \quad \quad \frac{\partial f}{\partial y} =2( y+2) \quad \quad \frac{\partial f}{\partial z} =-1

     fx(2,0,10)=2fy(2,0,10)=4fz(2,0,10)=1\Longrightarrow \ \frac{\partial f}{\partial x}_{( 2,0,10)} =2\quad \quad \frac{\partial f}{\partial y}_{( 2,0,10)} =4\quad \quad \frac{\partial f}{\partial z}_{( 2,0,10)} =-1

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=02(x2)+4(y)(z10)=02x4+4yz+10=02x+4yz=6\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x-2) +4( y) -( z-10) & =0\\ 2x-4+4y-z+10 & =0\\ 2x+4y-z & =-6 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x22=y4=z101\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-2}{2} & =\frac{y}{4} =\frac{z-10}{-1} \end{aligned}

    g. x212+y26+z24=1\displaystyle\frac{x^{2}}{12}+\frac{y^{2}}{6}+\frac{z^{2}}{4}=1 at (1,2,1)(1,2,1)

    Solution

    Partial derivation yields:

    fx=x6fy=y3fz=z2\frac{\partial f}{\partial x} =\frac{x}{6} \quad \quad \frac{\partial f}{\partial y} =\frac{y}{3} \quad \quad \frac{\partial f}{\partial z} =\frac{z}{2}

     fx(1,2,1)=16fy(1,2,1)=23fz(1,2,1)=12\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,2,1)} =\frac{1}{6} \quad \quad \frac{\partial f}{\partial y}_{( 1,2,1)} =\frac{2}{3} \quad \quad \frac{\partial f}{\partial z}_{( 1,2,1)} =\frac{1}{2}

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=016(x1)+23(y2)+12(z1)=016x16+23y43+12z12=016x+46y+36z168636=016x+46y+36z2=0x+4y+3z=12\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ \frac{1}{6}( x-1) +\frac{2}{3}( y-2) +\frac{1}{2}( z-1) & =0\\ \frac{1}{6} x-\frac{1}{6} +\frac{2}{3} y-\frac{4}{3} +\frac{1}{2} z-\frac{1}{2} & =0\\ \frac{1}{6} x+\frac{4}{6} y+\frac{3}{6} z-\frac{1}{6} -\frac{8}{6} -\frac{3}{6} & =0\\ \frac{1}{6} x+\frac{4}{6} y+\frac{3}{6} z-2 & =0\\ x+4y+3z & =12 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x116=y223=z112x116=y246=z136x11=y24=z13\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{\frac{1}{6}} & =\frac{y-2}{\frac{2}{3}} =\frac{z-1}{\frac{1}{2}}\\ \frac{x-1}{\frac{1}{6}} & =\frac{y-2}{\frac{4}{6}} =\frac{z-1}{\frac{3}{6}}\\ \frac{x-1}{1} & =\frac{y-2}{4} =\frac{z-1}{3} \end{aligned}

    h. zex+ez+1+xy+y=3z e^{x}+e^{z+1}+x y+y=3 at (0,31)(0,3-1)

    Solution

    Partial derivation yields:

    fx=zex+yfy=x+1fz=ex+ez+1\frac{\partial f}{\partial x} =ze^{x} +y\quad \quad \frac{\partial f}{\partial y} =x+1\quad \quad \frac{\partial f}{\partial z} =e^{x} +e^{z+1}

     fx(0,3,1)=2fy(0,3,1)=1fz(0,3,1)=2\Longrightarrow \ \frac{\partial f}{\partial x}_{( 0,3,-1)} =2\quad \quad \frac{\partial f}{\partial y}_{( 0,3,-1)} =1\quad \quad \frac{\partial f}{\partial z}_{( 0,3,-1)} =2

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=02(x)+(y3)+2(z+1)=02x+y3+2z+2=02x+y+2z=1\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x) +( y-3) +2( z+1) & =0\\ 2x+y-3+2z+2 & =0\\ 2x+y+2z & =1 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x2=y31=z+12\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x}{2} & =\frac{y-3}{1} =\frac{z+1}{2} \end{aligned}
Your Help needed

This website has received 3000 view in the first two weeks! However, this project repository did not receive any star! Just simply head over to this website's repository to give it a star! Every tutorial takes me around two hours to compile, proof-read and styling this website! Your simple action would encourage me a lot! Thank you! You could Buy me a coffee too!