Skip to main content

Tutorial 2

Tutorial 2: Partial Derivatives Engineering Applications of Partial Derivatives

  1. Find the partial derivative (fy)\displaystyle\left(\frac{\partial f}{\partial y}\right) and (fx)\displaystyle\left(\frac{\partial f}{\partial x}\right) of these functions using the limit definition

    a. f(x,y)=x2y+2x+y3f(x, y)=x^{2} y+2 x+y^{3}

    Solution
    fx(x,y)=limh0f(x+h,y)f(x,y)h=limh0(x+h)2y+2(x+h)+y3(x2y+2x+y3)h=limh0x2y+2xhy+h2y+2x+2h+y3(x2y+2x+y3)h=limh02xhy+h2y+2hh=limh02xy+hy+2=2xy+2fy(x,y)=limh0f(x,y+h)f(x,y)h=limh0x2(y+h)+2x+(y+h)3x2y2xy3h=limh0x2y+x2h+2x+y3+3y2h+3yh2+h3x2y2xy3h=limh0x2h+3y2h+3yh2+h3h=limh0x2+3y2+3yh+h2=x2+3y2\begin{aligned} f_{x}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{(x+h)^{2} y+2(x+h)+y^{3}-\left(x^{2} y+2 x+y^{3}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2} y+2 x h y+h^{2} y+2 x+2 h+y^{3}-\left(x^{2} y+2 x+y^{3}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{2 x h y+h^{2} y+2 h}{h} \\ &=\lim _{h \rightarrow 0} 2 x y+h y+2 \\ &=2 x y+2 \\ f_{y}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}(y+h)+2 x+(y+h)^{3}-x^{2} y-2 x-y^{3}}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2} y+x^{2} h+2 x+y^{3}+3 y^{2} h+3 y h^{2}+h^{3}-x^{2} y-2 x-y^{3}}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2} h+3 y^{2} h+3 y h^{2}+h^{3}}{h} \\ &=\lim _{h \rightarrow 0} x^{2}+3 y^{2}+3 y h+h^{2} \\ &=x^{2}+3 y^{2} \end{aligned}

    b. f(x,y)=x24xy+y2f(x, y)=x^{2}-4 x y+y^{2}

    Solution

    Using the definition,

    fx(x,y)=limh0f(x+h,y)f(x,y)h=limh0(x+h)24(x+h)y+y2(x24xy+y2)h=limh0x2+2xh+h24xy4hy+y2(x24xy+y2)h=limh02xh+h24hyh=limh0(2x+h4y)=2x4y\begin{aligned} f_{x}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-4(x+h) y+y^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-4 x y-4 h y+y^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-4 h y}{h} \\ &=\lim _{h \rightarrow 0}(2 x+h-4 y) \\ &=2 x-4 y \end{aligned}

    Similarly,

    fy(x,y)=limh0f(x,y+h)f(x,y)h=limh0x24x(y+h)+(y+h)2(x24xy+y2)h=limh0x24xy4xh+y2+2yh+h2(x24xy+y2)h=limh04xh+2yh+h2h=limh0(4x+2y+h)=4x+2y\begin{aligned} f_{y}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}-4 x(y+h)+(y+h)^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}-4 x y-4 x h+y^{2}+2 y h+h^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{-4 x h+2 y h+h^{2}}{h} \\ &=\lim _{h \rightarrow 0}(-4 x+2 y+h) \\ &=-4 x+2 y \end{aligned}

    c. f(x,y)=2x3+3xyy2f(x, y)=2 x^{3}+3 x y-y^{2}

    Solution
    fx=limh0f(x+h,y)f(x,y)h=limh0h(6x2+6xh+2h2+3y)h=limh0(6x2+6xh+2h2+3y)=6x2+3yfy=limh0f(x,y+h)f(x,y)h=limh0h(3x2yh)h=limh0(3x2yh)=3x2y\begin{aligned} \frac{\partial f}{\partial x} &= \lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{h\left(6 x^{2}+6 x h+2 h^{2}+3 y\right)}{h} \\ &=\lim _{h \rightarrow 0}\left(6 x^{2}+6 x h+2 h^{2}+3 y\right) \\ &=6 x^{2}+3 y \\ \frac{\partial f}{\partial y} &= \lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{h(3 x-2 y-h)}{h} \\ &=\lim _{h \rightarrow 0}(3 x-2 y-h) \\ &=3 x-2 y \end{aligned}
  2. Determine all the first and second order partial derivatives of the function

    a. f(x,y)=x2y3+3y+xf(x, y)=x^{2} y^{3}+3 y+x

    Solution
    fx=2xy3+1fy=3x2y2+3x(fx)=2y3y(fx)=6xy2x(fy)=6xy2y(fy)=6x2y\begin{aligned} \frac{\partial f}{\partial x}&= 2xy^3+1 \\ \frac{\partial f}{\partial y}&= 3x^2y^2+3 \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= 2y^3 \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= 6xy^2 \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= 6xy^2 \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= 6x^2y \\ \end{aligned}

    b. f(x,y)=x4sin3yf(x, y)=x^{4} \sin 3 y

    Solution
    fx=4x3sin3yfy=3x4cos3yx(fx)=12x2sin3yy(fx)=12x3cos3yx(fy)=12x3cos3yy(fy)=9x4sin3y\begin{aligned} \frac{\partial f}{\partial x}&= 4x^3\sin{3y} \\ \frac{\partial f}{\partial y}&= 3x^4\cos{3y} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= 12x^2\sin{3y} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= 12x^3\cos{3y} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= 12x^3\cos{3y} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= -9x^4\sin{3y} \\ \end{aligned}

    c. f(x,y)=x2y+ln(y2x)f(x, y)=x^{2} y+\ln \left(y^{2}-x\right)

    Solution
    fx=2xy1y2xfy=x2+2yy2xx(fx)=2y1(y2x)2y(fx)=2x+2y(y2x)2x(fy)=2x+2y(y2x)2y(fy)=2y22x(y2x)2\begin{aligned} \frac{\partial f}{\partial x}&= 2xy-\frac{1}{y^2-x} \\ \frac{\partial f}{\partial y}&= x^2+\frac{2y}{y^2-x} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= 2y-\frac{1}{(y^2-x)^2} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= 2x+\frac{2y}{(y^2-x)^2} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= 2x+\frac{2y}{(y^2-x)^2} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= \frac{-2y^2-2x}{(y^2-x)^2} \\ \end{aligned}

    d. f(x,y)=exy(2xy)f(x, y)=e^{x y}(2 x-y)

    Solution
    fx=exy(2xyy2+2)fy=exy(2x2xy1)x(fx)=exy(2xy2y3+4y)y(fx)=exy(2x3yxy2+4x2y)x(fy)=exy(2x2yxy2+4x2y)y(fy)=exy(2x3x2y2x)\begin{aligned} \frac{\partial f}{\partial x}&= e^{xy}(2xy-y^2+2) \\ \frac{\partial f}{\partial y}&= e^{xy}(2x^2-xy-1) \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= e^{xy}(2xy^2-y^3+4y) \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= e^{xy}(2x^3y-xy^2+4x-2y) \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= e^{xy}(2x^2y-xy^2+4x-2y) \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= e^{xy}(2x^3-x^2y-2x)\\ \end{aligned}
  3. Find both partial derivatives for each of the following two variables functions

    a. g(x,y)=yex+yg(x, y)=y e^{x+y}

    Solution
    g(x,y)=yex+ygx(x,y)=yex+ygy(x,y)=ex+y+yex+y\begin{aligned} g(x, y)=& y e^{x+y} \\ g_{x}(x, y) &=y e^{x+y} \\ g_{y}(x, y) &=e^{x+y}+y e^{x+y} \end{aligned}

    b. h(x,y)=xsinyycosxh(x, y)=x \sin y-y \cos x

    Solution
    h(x,y)=xsinyycosxhx(x,y)=siny+ysinxhy(x,y)=xcosycosx\begin{aligned} &h(x, y)=x \sin y-y \cos x \\ &h_{x}(x, y)=\sin y+y \sin x \\ &h_{y}(x, y)=x \cos y-\cos x \end{aligned}

    c. p(x,y)=xy+y2p(x, y)=x^{y}+y^{2}

    Solution
    p(x,y)=xy+y2px(x,y)=yxy1py(x,y)=xylnx+2y\begin{aligned} p(x, y)=& x^{y}+y^{2} \\ p_{x}(x, y) &=y x^{y-1} \\ p_{y}(x, y) &=x^{y} \ln x+2 y \end{aligned}

    d. U(x,y)=9y3xyU(x, y)=\frac{9 y^{3}}{x-y}

    Solution
    Ux=Ux=(xy)(0)9y3(1)(xy)2=9y3(xy)2Uy=Uy=(xy)(27y2)9y3(1)(xy)2=27xy218y3(xy)2\begin{aligned} &\frac{\partial U}{\partial x}=U_{x}=\frac{(x-y)(0)-9 y^{3}(1)}{(x-y)^{2}}=\frac{-9 y^{3}}{(x-y)^{2}} \\ &\frac{\partial U}{\partial y}=U_{y}=\frac{(x-y)\left(27 y^{2}\right)-9 y^{3}(-1)}{(x-y)^{2}}=\frac{27 x y^{2}-18 y^{3}}{(x-y)^{2}} \end{aligned}
  4. For f(x,y,z)f(x, y, z), use the implicit function theorem to find dy/dxd y / d x and dy/dzd y / d z

    a. f(x,y,z)=x2y3+z2+xyzf(x, y, z)=x^{2} y^{3}+z^{2}+x y z

    Solution
    f(x,y,z)=x2y3+z2+xyzdydx=fxfy=2xy3+yz3x2y2+xzdydz=fzfy=2z+xy3x2y2+xz\begin{gathered} f(x, y, z)=x^{2} y^{3}+z^{2}+x y z \\ \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{2 x y^{3}+y z}{3 x^{2} y^{2}+x z} \\ \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 z+x y}{3 x^{2} y^{2}+x z} \end{gathered}

    b. f(x,y,z)=x3z2+y3+4xyzf(x, y, z)=x^{3} z^{2}+y^{3}+4 x y z

    Solution
    f(x,y,z)=x3z2+y3+4xyzdydx=fxfy=3x2z2+4yz3y2+4xzdydz=fzfy=2x3z+4xy3y2+4xz\begin{gathered} f(x, y, z)=x^{3} z^{2}+y^{3}+4 x y z \\ \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{3 x^{2} z^{2}+4 y z}{3 y^{2}+4 x z} \\ \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 x^{3} z+4 x y}{3 y^{2}+4 x z} \end{gathered}

    c. f(x,y,z)=3x2y3+xz2y2+y3zx4+y2zf(x, y, z)=3 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z

    Solution
    f(x,y,z)=3x2y3+xz2y2+y3zx4+y2zdydx=fxfy=6xy3+z2y2+4y3zx39x2y2+2xz2y+3y2zx4+2yzdydz=fzfy=2xzy2+y3x4+y29x2y2+2xz2y+3y2zx4+2yz\begin{gathered} f(x, y, z)=3 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z \\ \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{6 x y^{3}+z^{2} y^{2}+4 y^{3} z x^{3}}{9 x^{2} y^{2}+2 x z^{2} y+3 y^{2} z x^{4}+2 y z} \\ \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 x z y^{2}+y^{3} x^{4}+y^{2}}{9 x^{2} y^{2}+2 x z^{2} y+3 y^{2} z x^{4}+2 y z} \end{gathered}
  5. Find Fs\frac{\partial F}{\partial s} and Ft\frac{\partial F}{\partial t}, if applicable, for the following composite functions

    a. F=sin(x+y)F=\sin (x+y) where x=2stx=2st and y=s2+t2y=s^2+t^2

    Solution
    Fs=Fxxs+Fyys=cos(x+y)(2t)+cos(x+y)(2s)=2tcos(2st+s2+t2)+2scos(st+s2+t2)=2cos((s+t)2)(s+t)\begin{aligned} \frac{\partial F}{\partial s}&=\frac{\partial F}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial s} \\ &=\cos (x+y)(2t)+\cos (x+y)(2s) \\ &=2t\cos (2st+s^2+t^2)+2s\cos (st+s^2+t^2) \\ &= 2\cos ((s+t)^2)(s+t) \end{aligned}
    Ft=Fxxt+Fyyt=cos(x+y)(2s)+cos(x+y)(2t)=2cos((s+t)2)(s+t)\begin{aligned} \frac{\partial F}{\partial t}&=\frac{\partial F}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial t} \\ &=\cos (x+y)(2s)+\cos (x+y)(2t) \\ &= 2\cos ((s+t)^2)(s+t) \end{aligned}

    b. F=ln(x2+y)F=\ln \left(x^{2}+y\right) where x=e(s+t2)x=\mathrm{e}^{(s+t 2)} and y=s2+ty=s^{2}+t

    Solution
    Fs=Fxxs+Fyys=2xx2+yes+t2+1x2+y2s=2x2+y(xes+t2+s)\begin{aligned} \frac{\partial F}{\partial s} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial s} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial s}\\ & =\frac{2x}{x^{2} +y} e^{s+t^{2}} +\frac{1}{x^{2} +y} 2s\\ & =\frac{2}{x^{2} +y}\left( xe^{s+t^{2}} +s\right) \end{aligned}
    Ft=Fxxt+Fyyt=2xx2+y2tes+t2+1x2+y(1)=1x2+y(4xtes+t2+1)\begin{aligned} \frac{\partial F}{\partial t} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial t} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial t}\\ & =\frac{2x}{x^{2} +y} 2te^{s+t^{2}} +\frac{1}{x^{2} +y}( 1)\\ & =\frac{1}{x^{2} +y}\left( 4xte^{s+t^{2}} +1\right) \end{aligned}

    c. F=x2y2F=x^{2} y^{2} where x=scostx=s \cos t and y=ssinty=s \sin t

    Solution
    Fs=Fxxs+Fyys=2xy2cost+2x2ysint=2(scost)(s2sin2t)(cost)+2(s2cos2t)(ssint)(sint)=2s3cos2tsin2t+2s3cos2tsin2t=4s3cos2tsin2t=4s3(costsint)2=4s3(12sin2t)2=s3(sin2t)2\begin{aligned} \frac{\partial F}{\partial s} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial s} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial s}\\ & =2xy^{2}\cos t+2x^{2} y\sin t\\ & =2( s\cos t)\left( s^{2}\sin^{2} t\right)(\cos t) +2\left( s^{2}\cos^{2} t\right)( s\sin t)(\sin t)\\ & =2s^{3}\cos^{2} t\sin^{2} t+2s^{3}\cos^{2} t\sin^{2} t\\ & =4s^{3}\cos^{2} t\sin^{2} t\\ & =4s^{3}(\cos t\sin t)^{2}\\ & =4s^{3}\left(\frac{1}{2}\sin 2t\right)^{2}\\ & =s^{3}(\sin 2t)^{2} \end{aligned}
    Ft=Fxxt+Fyyt=2xy2(ssint)+2x2y(scost)=2x2yscost2xy2ssint=2(s2cos2t)(ssint)scost2(scost)(s2sin2t)ssint=2s4cos3tsint2s4costsin3t=2s4(costsint)(cos2tsin2t)=2s4(12sin2t)(cos2t)=s4sin2tcos2t\begin{aligned} \frac{\partial F}{\partial t} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial t} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial t}\\ & =2xy^{2}( -s\sin t) +2x^{2} y( s\cos t)\\ & =2x^{2} ys\cos t-2xy^{2} s\sin t\\ & =2\left( s^{2}\cos^{2} t\right)( s\sin t) s\cos t-2( s\cos t)\left( s^{2}\sin^{2} t\right) s\sin t\\ & =2s^{4}\cos^{3} t\sin t-2s^{4}\cos t\sin^{3} t\\ & =2s^{4}(\cos t\sin t)\left(\cos^{2} t-\sin^{2} t\right)\\ & =2s^{4}\left(\frac{1}{2}\sin 2t\right)(\cos 2t)\\ & =s^{4}\sin 2t\cos 2t \end{aligned}

    d. F=xy+yz2F=xy+y \mathrm{z}^{2} where x=et,y=etsintx=\mathrm{e}^{t}, y=\mathrm{e}^{t} \sin t and z=etcost\mathrm{z}=\mathrm{e}^{t} \cos t

    Solution
    dFdt=Fxxt+Fyyt+Fzzt=yet+(x+z2)(etcost+sintet)+2yz(etsint+costet)=yet+xetcost+xsintet+z2etcost+z2sintet2yzetsint+2yzcostet=yet+etcost(x+z2+2yz)+etsint(x+z22yz)=etsintet+etcost(et+e2tcost+2e2tsintcost)     +etsint(et+e2tcos2t2e2tsintcost)=e2tsint+e2tcost+e3tcos3t+2e2tsintcos2t+e2tsint+e3tsintcos2t     2e3tsin2tcost=2e2tsint+e2tcost+e3tcos3t+3e3tsintcos2t2e3tsin2tcost=e2t(2sint+cost)+e3t(cos3t+3sintcos2t2sin2tcost)\begin{aligned} \frac{dF}{dt} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial t} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial t} +\frac{\partial F}{\partial z}\frac{\partial z}{\partial t}\\ & =ye^{t} +\left( x+z^{2}\right)\left( e^{t}\cos t+\sin^{t} e^{t}\right) +2yz\left( -e^{t}\sin t+\cos te^{t}\right)\\ & =ye^{t} +xe^{t}\cos t+x\sin^{t} e^{t} +z^{2} e^{t}\cos t+z^{2}\sin te^{t} -2yze^{t}\sin t+2yz\cos te^{t}\\ & =ye^{t} +e^{t}\cos t\left( x+z^{2} +2yz\right) +e^{t}\sin t\left( x+z^{2} -2yz\right)\\ & =e^{t}\sin t\cdot e^{t} +e^{t}\cos t\left( e^{t} +e^{2t}\cos t+2e^{2t}\sin t\cos t\right)\\ & \ \ \ \ \ +e^{t}\sin t\left( e^{t} +e^{2t}\cos^{2} t-2e^{2t}\sin t\cos t\right)\\ & =e^{2t}\sin t+e^{2t}\cos t+e^{3t}\cos^{3} t+2e^{2t}\sin t\cos^{2} t+e^{2t}\sin t+e^{3t}\sin t\cos^{2} t\\ & \ \ \ \ \ -2e^{3} t\sin^{2} t\cos t\\ & =2e^{2t}\sin t+e^{2t}\cos t+e^{3t}\cos^{3} t+3e^{3t}\sin t\cos^{2} t-2e^{3t}\sin^{2} t\cos t\\ & =e^{2t}( 2\sin t+\cos t) +e^{3t}\left(\cos^{3} t+3\sin t\cos^{2} t-2\sin^{2} t\cos t\right) \end{aligned}
  6. Find dy/dxd y / d x and dy/dzd y / d z (if applicable) for each of the following

    a. 7x2+2xy2+9y4=07 x^{2}+2 x y^{2}+9 y^{4}=0

    Solution
    dydx=FxFy=14x+2y236y2+4xy\begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{14x+2y^{2}}{36y^{2} +4xy} \end{aligned}

    b. x3z2+y3+4xyz=0x^{3} z^{2}+y^{3}+4 x y z=0

    Solution
    dydx=FxFy=3x2z2+4yz3y2+4xzdydz=FzFy=2x3z+4xy3y2+4xz\begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{3x^{2} z^{2} +4yz}{3y^{2} +4xz}\\ \frac{dy}{dz} & =-\frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial y}} =-\frac{2x^{3} z+4xy}{3y^{2} +4xz} \end{aligned}

    c. 3x2y3+xz2y2+y3zx4+y2z=03 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z=0

    Solution
    dydx=FxFy=6xy3+z2y2+4y3zx39x2y2+2xz2y+3y2zx4+2yzdydz=FzFy=2xzy2+y3x4+y29x2y2+2xz2y+3yzx4+2yz\begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{6xy^{3} +z^{2} y^{2} +4y^{3} zx^{3}}{9x^{2} y^{2} +2xz^{2} y+3y^{2} zx^{4} +2yz}\\ \frac{dy}{dz} & =-\frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial y}} =-\frac{2xzy^{2} +y^{3} x^{4} +y^{2}}{9x^{2} y^{2} +2xz^{2} y+3y^{z} x^{4} +2yz} \end{aligned}

    d. y5+x2y3=1+yexp(x2)y^{5}+x^{2} y^{3}=1+y \exp \left(x^{2}\right)

    Solution
    dydx=FxFy=2xy(y2ex2)5y4+3x2y2ex2\begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{2xy\left( y^{2} -e^{x^{2}}\right)}{5y^{4} +3x^{2} y^{2} -e^{x^{2}}} \end{aligned}
  7. a. In polar coordinates, x=rcosθ,y=rsinθx=r \cos \theta, y=r \sin \theta, show that (x,y)(r,θ)=r\frac{\partial(x, y)}{\partial(r, \theta)}=r

    Solution
     For x=rcosθ,xr=cosθ,xθ=rsinθy=rsinθ,yr=sinθ,yθ=rcosθ(x,y)(r,θ)=xrxθyryθ=cosθrsinθsinθrcosθ=r.\begin{aligned} & \text { For } x=r \cos \theta, \frac{\partial x}{\partial r}=\cos \theta, \frac{\partial x}{\partial \theta}=-r \sin \theta \\ & y=r \sin \theta, \frac{\partial y}{\partial r}=\sin \theta, \frac{\partial y}{\partial \theta}=r \cos \theta \\ & \therefore \quad \frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right|=\left|\begin{array}{cc}\cos \theta & -r \sin \theta \\\sin \theta & r \cos \theta\end{array}\right|=r . \end{aligned}

    b. Obtain the Jacobian JJ of the transformation s=2x+y,t=x2ys=2 x+y, t=x-2 y and determine the inverse of the transformation J1J_{1}. Confirm that J1=J1J_{1}=J^{-1}.

    Solution
    J=(s,t)(x,y)=2112=5\begin{aligned} J & =\frac{\partial ( s,t)}{\partial ( x,y)}\\ & =\left| \begin{matrix} 2 & 1\\ 1 & -2 \end{matrix}\right| \\ & =-5 \end{aligned}
    x=15(2s+t)y=15(s2t)J1=(x,y)(s,t)=25151525=15\begin{array}{l} x=\frac{1}{5}( 2s+t) \quad \quad y=\frac{1}{5}( s-2t)\\ \\ \begin{aligned} J_{1} & =\frac{\partial ( x,y)}{\partial ( s,t)}\\ & =\left| \begin{matrix} \frac{2}{5} & \frac{1}{5}\\ \frac{1}{5} & -\frac{2}{5} \end{matrix}\right| \\ & =-\frac{1}{5} \end{aligned} \end{array}
    J1=J1\therefore J_{1} =J^{-1}

    c. Show that if x+y=ux+y=\mathrm{u} and y=uvy=\mathrm{uv}, then (x,y)(u,v)=u\frac{\partial(x, y)}{\partial(u, v)}=u.

    Solution
    x+uv=ux=uuvdxdu=1vdxdv=1\begin{array}{l} x+uv=u\Longrightarrow x=u-uv\\ \frac{dx}{du} =1-v\\ \frac{dx}{dv} =-1 \end{array}
    y=uvdydu=vdydv=u\begin{array}{l} y=uv\\ \frac{dy}{du} =v\\ \frac{dy}{dv} =u \end{array}
    (x,y)(u,v)=xuyuxvyv=1vvuu=uuv+uv=u \begin{aligned} \frac{\partial ( x,y)}{\partial ( u,v)} & =\left| \begin{matrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u}\\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{matrix}\right| \\ & =\left| \begin{matrix} 1-v & v\\ -u & u \end{matrix}\right| \\ & =u-uv+uv\\ & =u\ \end{aligned}

    d. Verify whether the functions u=x+y1xyu=\frac{x+y}{1-x y} and v=tan1x+tan1yv=\tan ^{-1} x+\tan ^{-1} y are functionally dependent.

    Solution
    (u,v)(x,y)=uxuyvxvy=1+y2(1xy)21+x2(1xy)211+x211+y2=1(1xy)21(1xy)2=0\begin{aligned} \frac{\partial ( u,v)}{\partial ( x,y)} & =\left| \begin{matrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{matrix}\right| =\left| \begin{matrix} \frac{1+y^{2}}{( 1-xy)^{2}} & \frac{1+x^{2}}{( 1-xy)^{2}}\\ \frac{1}{1+x^{2}} & \frac{1}{1+y^{2}} \end{matrix}\right| \\ & =\frac{1}{( 1-xy)^{2}} -\frac{1}{( 1-xy)^{2}}\\ & =0 \end{aligned}

    e. If x=uv,u+vuvx=\mathrm{uv}, \frac{u+v}{u-v}, find (u,v)(x,y)\frac{\partial(u, v)}{\partial(x, y)}.

    Solution
    (x,y)(u,v)=xuyuxvyv=vu2v(uv)22u(uv)2=2uv(uv)2+2uv(uv)2=4uv(uv)2(u,v)(x,y)=(uv)24uv\begin{aligned} \frac{\partial ( x,y)}{\partial ( u,v)} & =\left| \begin{matrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u}\\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{matrix}\right| =\left| \begin{matrix} v & u\\ -\frac{2v}{( u-v)^{2}} & -\frac{2u}{( u-v)^{2}} \end{matrix}\right| \\ & =\frac{2uv}{( u-v)^{2}} +\frac{2uv}{( u-v)^{2}}\\ & =\frac{4uv}{( u-v)^{2}}\\ \frac{\partial ( u,v)}{\partial ( x,y)} & =\frac{( u-v)^{2}}{4uv} \end{aligned}
  8. a. How sensitive is the volume V=πr2hV=\pi r^{2} h of a right circular cylinder to small changes in its radius and height near the point (r0,h0)=(1,3)\left(r_{0}, h_{0}\right)=(1,3)?

    Solution
    Figure for Answer 8a

    By increment method, we get

    ΔV(Vr)(r0,h0)Δr+(Vh)(r0,h0)Δh=Vr(1,3)Δr+Vh(1,3)Δh=(2πrh)(1,3)Δr+(πr2)(1,3)Δh=6πΔr+πΔh\begin{aligned} \Delta V & \approx\left(\frac{\partial V}{\partial r}\right)_{\left(r_{0}, h_{0}\right)} \Delta r+\left(\frac{\partial V}{\partial h}\right)_{\left(r_{0}, h_{0}\right)} \Delta h \\ &=V_{r}(1,3) \Delta r+V_{h}(1,3) \Delta h \\ &=(2 \pi r h)_{(1,3)} \Delta r+\left(\pi r^{2}\right)_{(1,3)} \cdot \Delta h \\ &=6 \pi \cdot \Delta r+\pi \cdot \Delta h \end{aligned}

    The above result shows that a one-unit change in rr will change VV nearly by π\pi units and a one-unit change in hh will change VV nearly by 6π6 \pi units. Therefore, the volume of a cylinder with radius r=1r=1 and height h=3h=3 is nearly 6 times as sensitive to small change in rr as it is to small change in hh Fig. 4.3(i).

    In contrast, if value of rr and hh are reversed, so that r=3r=3 and h=1h=1, then ΔV6πΔr+9π\Delta V \approx 6 \pi \cdot \Delta r+9 \pi. Δh\Delta h. The volume is now more sensitive to small change in hh to that it is to change in rr. Thus the sensitivity to change depends not only on the increment but also on the relative size of rr and hh (See Fig. 4.3 (ii)).

    b. If rr is measured with an accuracy of ±1%\pm 1 \% and hh with an accuracy of ±0.5%\pm 0.5 \%, about how accurately can VV be calculated from the formula V=πr2hV=\pi r^{2} h ?

    Solution

    For V=πr2hV=\pi r^{2} h or logV=logπ+2logr+logh\log V=\log \pi+2 \log r+\log h, increment approximation implies

    ΔVV2Δrr+Δhh.\frac{\Delta V}{V} \approx 2 \frac{\Delta r}{r}+\frac{\Delta h}{h} .

    Given, Δrr×100=±1,Δhh×100=±0.5=12}\left.\quad \begin{array}{l}\frac{\Delta r}{r} \times 100=\pm 1, \\ \frac{\Delta h}{h} \times 100=\pm 0.5=\frac{1}{2}\end{array}\right\} so that Δrr1100Δhh1200}\left.\begin{array}{l}\left|\frac{\Delta r}{r}\right| \leq \frac{1}{100} \\ \left|\frac{\Delta h}{h}\right| \leq \frac{1}{200}\end{array}\right\}

    ΔVV2Δrr+Δhh2Δrr+Δhh=2100+1200=0.025\therefore\left|\frac{\Delta V}{V}\right| \approx\left|2 \frac{\Delta r}{r}+\frac{\Delta h}{h}\right| \leq 2\left|\frac{\Delta r}{r}\right|+\left|\frac{\Delta h}{h}\right|=\frac{2}{100}+\frac{1}{200}=0.025

    Thus, the maximum percentage error (or change), viz. ΔVV×100\left|\frac{\Delta V}{V}\right| \times 100, due to possible percentage error (or change) in measurement of rr and AA will be about 2.52.5 per cent.

    c. The period TT of a simple pendulum is T=2πlgT=2 \pi \sqrt{\frac{l}{g}}, find the maximum percentage error in TT due to possible errors up to 1%1 \% in ll and 2%2 \% in gg (Hint: dll=0.001\frac{d l}{l}=0.001 and dgg=0.002\frac{d g}{g}=0.002 )

    Solution
    logT=log2π+12logl12loggdTT=0+12ldl12gdg=(12)(dll)(12)(dgg)=(12)(0.001)±(12)(0.002)=0.0005±0.001\begin{aligned} \log T & =\log 2\pi +\frac{1}{2}\log l-\frac{1}{2}\log g\\ \frac{dT}{T} & =0+\frac{1}{2l} dl-\frac{1}{2g} dg\\ & =\left(\frac{1}{2}\right)\left(\frac{dl}{l}\right) -\left(\frac{1}{2}\right)\left(\frac{dg}{g}\right)\\ & =\left(\frac{1}{2}\right)( 0.001) \pm \left(\frac{1}{2}\right)( 0.002)\\ & =0.0005\pm 0.001 \end{aligned}
    Max error= 1.5%\therefore \text{Max error} =\ 1.5\%

    d. The range RR of a projectile which starts with a velocity vv at an elevation α\alpha is given by R=R= v2sin2αg\frac{v^{2} \sin 2 \alpha}{g}. Find the percentage error in RR due to an error of 1%1 \% in v\mathrm{v} and an error of 0.5%0.5 \% in α\alpha.

    Solution

    Given R=v2sin2αgR=\frac{v^{2} \sin 2 \alpha}{g} or logR=2logv+logsin2αlogg\log R=2 \log v+\log \sin 2 \alpha-\log g.

    By error approximation (i.e. taking differential on both sides)

    δRR=2δvv+1sin2αcos2α2δα,(δg=0)\frac{\delta R}{R}=2 \frac{\delta v}{v}+\frac{1}{\sin 2 \alpha} \cos 2 \alpha \cdot 2 \delta \alpha,(\delta g=0)

    or

    (δRR×100)=2(δvv×100)+2α(cot2α)(δαα×100)=2×1+2αcot2α×0.5=2+2αcot2α×12=(2+αcot2α)\begin{aligned} \left(\frac{\delta R}{R} \times 100\right) &=2\left(\frac{\delta v}{v} \times 100\right)+2 \alpha(\cot 2 \alpha)\left(\frac{\delta \alpha}{\alpha} \times 100\right) \\ &=2 \times 1+2 \alpha \cdot \cot 2 \alpha \times 0.5=2+2 \alpha \cot 2 \alpha \times \frac{1}{2} \\ &=(2+\alpha \cot 2 \alpha) \end{aligned}

    Hence, the percentage error in calculation of RR due to errors of 1%1 \% in RR and 0.5%0.5 \% in α\alpha is (2+αcot2α)(2+\alpha \cot 2 \alpha).

  9. Find the equations of the tangent plane and normal line to the following surfaces at the points indicated:

    a. x2+2y2+3z2=6x^{2}+2 y^{2}+3 z^{2}=6 at (1,1,1)(1,1,1)

    Solution

    Partial derivation yields:

    fx=2xfy=4yfz=6z\frac{\partial f}{\partial x} =2x\quad \quad \frac{\partial f}{\partial y} =4y\quad \quad \frac{\partial f}{\partial z} =6z

     fx(1,1,1)=2fy(1,1,1)=4fz(1,1,1)=6\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,1,1)} =2\quad \quad \frac{\partial f}{\partial y}_{( 1,1,1)} =4\quad \quad \frac{\partial f}{\partial z}_{( 1,1,1)} =6

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=02(x1)+4(y1)+6(z1)=02x2+4y4+6z6=0x+2y+3z=6\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x-1) +4( y-1) +6( z-1) & =0\\ 2x-2+4y-4+6z-6 & =0\\ x+2y+3z & =6 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x12=y14=z16x11=y12=z13\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{2} & =\frac{y-1}{4} =\frac{z-1}{6}\\ \frac{x-1}{1} & =\frac{y-1}{2} =\frac{z-1}{3} \end{aligned}

    b. 2x2+y2z2=32 x^{2}+y^{2}-z^{2}=-3 at (1,2,3)(1,2,3)

    Solution

    Partial derivation yields:

    fx=4xfy=2yfz=2z\frac{\partial f}{\partial x} =4x\quad \quad \frac{\partial f}{\partial y} =2y\quad \quad \frac{\partial f}{\partial z} =-2z

     fx(1,2,3)=4fy(1,2,3)=4fz(1,2,3)=6\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,2,3)} =4\quad \quad \frac{\partial f}{\partial y}_{( 1,2,3)} =4\quad \quad \frac{\partial f}{\partial z}_{( 1,2,3)} =-6

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=04(x1)+4(y2)6(z3)=04x4+4y86z+18=04x+4y6z=62x+2y3z=3\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 4( x-1) +4( y-2) -6( z-3) & =0\\ 4x-4+4y-8-6z+18 & =0\\ 4x+4y-6z & =-6\\ 2x+2y-3z & =-3 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x14=y24=z36x12=y22=z33\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{4} & =\frac{y-2}{4} =\frac{z-3}{-6}\\ \frac{x-1}{2} & =\frac{y-2}{2} =\frac{z-3}{-3} \end{aligned}

    c. x2+y2z=1x^{2}+y^{2}-z=1 at (1,2,4)(1,2,4)

    Solution

    Partial derivation yields:

    fx=2xfy=2yfz=1\frac{\partial f}{\partial x} =2x\quad \quad \frac{\partial f}{\partial y} =2y\quad \quad \frac{\partial f}{\partial z} =-1

     fx(1,2,4)=2fy(1,2,4)=4fz(1,2,4)=1\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,2,4)} =2\quad \quad \frac{\partial f}{\partial y}_{( 1,2,4)} =4\quad \quad \frac{\partial f}{\partial z}_{( 1,2,4)} =-1

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=02(x1)+4(y2)1(z4)=02x2+4y8z+4=02x+4yz=6\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x-1) +4( y-2) -1( z-4) & =0\\ 2x-2+4y-8-z+4 & =0\\ 2x+4y-z & =6 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x12=y24=z41\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{2} & =\frac{y-2}{4} =\frac{z-4}{-1} \end{aligned}

    d. ln(xy)z2(x2y)3z=3\displaystyle \ln \left(\frac{x}{y}\right)-z^{2}(x-2 y)-3 z=3 at (4,2,1)(4,2,-1)

    Solution

    Partial derivation yields:

    fx=1xz2fy=2z21yfz=2z(x2y)3\frac{\partial f}{\partial x} =\frac{1}{x} -z^{2} \quad \quad \frac{\partial f}{\partial y} =2z^{2} -\frac{1}{y} \quad \quad \frac{\partial f}{\partial z} =-2z( x-2y) -3

     fx(4,2,1)=34fy(4,2,1)=32fz(4,2,1)=3\Longrightarrow \ \frac{\partial f}{\partial x}_{( 4,2,-1)} =-\frac{3}{4} \quad \quad \frac{\partial f}{\partial y}_{( 4,2,-1)} =\frac{3}{2} \quad \quad \frac{\partial f}{\partial z}_{( 4,2,-1)} =-3

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=034(x4)+32(y2)3(z+1)=034x+3+32y33z3=034x+32y3z=3\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ -\frac{3}{4}( x-4) +\frac{3}{2}( y-2) -3( z+1) & =0\\ -\frac{3}{4} x+3+\frac{3}{2} y-3-3z-3 & =0\\ -\frac{3}{4} x+\frac{3}{2} y-3z & =3 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x434=y232=z+13\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-4}{-\frac{3}{4}} & =\frac{y-2}{\frac{3}{2}} =\frac{z+1}{-3} \end{aligned}

    e. x3z+z3x2yz=0x^{3} z+z^{3} x-2 y z=0 at (1,1,1)(1,1,1)

    Solution

    Partial derivation yields:

    fx=3x2z+z3fy=2zfz=x3+3z2x2y\frac{\partial f}{\partial x} =3x^{2} z+z^{3} \quad \quad \frac{\partial f}{\partial y} =-2z\quad \quad \frac{\partial f}{\partial z} =x^{3} +3z^{2} x-2y

     fx(1,1,1)=4fy(1,1,1)=2fz(1,1,1)=2\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,1,1)} =4\quad \quad \frac{\partial f}{\partial y}_{( 1,1,1)} =-2\quad \quad \frac{\partial f}{\partial z}_{( 1,1,1)} =2

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=04(x1)2(y1)+2(z1)=04x42y+2+2z2=04x2y+2z=42xy+z=2\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 4( x-1) -2( y-1) +2( z-1) & =0\\ 4x-4-2y+2+2z-2 & =0\\ 4x-2y+2z & =4\\ 2x-y+z & =2 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x14=y12=z12x12=y11=z11\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{4} & =\frac{y-1}{-2} =\frac{z-1}{2}\\ \frac{x-1}{2} & =\frac{y-1}{-1} =\frac{z-1}{1} \end{aligned}

    f. z=5+(x1)2+(y+2)2z=5+(x-1)^{2}+(y+2)^{2} at (2,0,10)(2,0,10)

    Solution

    z=5+(x1)2+(y+2)2(x1)2+(y+2)2z=5z=5+( x-1)^{2} +( y+2)^{2} \Longrightarrow ( x-1)^{2} +( y+2)^{2} -z=5

    Partial derivation yields:

    fx=2(x1)fy=2(y+2)fz=1\frac{\partial f}{\partial x} =2( x-1) \quad \quad \frac{\partial f}{\partial y} =2( y+2) \quad \quad \frac{\partial f}{\partial z} =-1

     fx(2,0,10)=2fy(2,0,10)=4fz(2,0,10)=1\Longrightarrow \ \frac{\partial f}{\partial x}_{( 2,0,10)} =2\quad \quad \frac{\partial f}{\partial y}_{( 2,0,10)} =4\quad \quad \frac{\partial f}{\partial z}_{( 2,0,10)} =-1

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=02(x2)+4(y)(z10)=02x4+4yz+10=02x+4yz=6\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x-2) +4( y) -( z-10) & =0\\ 2x-4+4y-z+10 & =0\\ 2x+4y-z & =-6 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x22=y4=z101\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-2}{2} & =\frac{y}{4} =\frac{z-10}{-1} \end{aligned}

    g. x212+y26+z24=1\displaystyle\frac{x^{2}}{12}+\frac{y^{2}}{6}+\frac{z^{2}}{4}=1 at (1,2,1)(1,2,1)

    Solution

    Partial derivation yields:

    fx=x6fy=y3fz=z2\frac{\partial f}{\partial x} =\frac{x}{6} \quad \quad \frac{\partial f}{\partial y} =\frac{y}{3} \quad \quad \frac{\partial f}{\partial z} =\frac{z}{2}

     fx(1,2,1)=16fy(1,2,1)=23fz(1,2,1)=12\Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,2,1)} =\frac{1}{6} \quad \quad \frac{\partial f}{\partial y}_{( 1,2,1)} =\frac{2}{3} \quad \quad \frac{\partial f}{\partial z}_{( 1,2,1)} =\frac{1}{2}

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=016(x1)+23(y2)+12(z1)=016x16+23y43+12z12=016x+46y+36z168636=016x+46y+36z2=0x+4y+3z=12\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ \frac{1}{6}( x-1) +\frac{2}{3}( y-2) +\frac{1}{2}( z-1) & =0\\ \frac{1}{6} x-\frac{1}{6} +\frac{2}{3} y-\frac{4}{3} +\frac{1}{2} z-\frac{1}{2} & =0\\ \frac{1}{6} x+\frac{4}{6} y+\frac{3}{6} z-\frac{1}{6} -\frac{8}{6} -\frac{3}{6} & =0\\ \frac{1}{6} x+\frac{4}{6} y+\frac{3}{6} z-2 & =0\\ x+4y+3z & =12 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x116=y223=z112x116=y246=z136x11=y24=z13\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{\frac{1}{6}} & =\frac{y-2}{\frac{2}{3}} =\frac{z-1}{\frac{1}{2}}\\ \frac{x-1}{\frac{1}{6}} & =\frac{y-2}{\frac{4}{6}} =\frac{z-1}{\frac{3}{6}}\\ \frac{x-1}{1} & =\frac{y-2}{4} =\frac{z-1}{3} \end{aligned}

    h. zex+ez+1+xy+y=3z e^{x}+e^{z+1}+x y+y=3 at (0,31)(0,3-1)

    Solution

    Partial derivation yields:

    fx=zex+yfy=x+1fz=ex+ez+1\frac{\partial f}{\partial x} =ze^{x} +y\quad \quad \frac{\partial f}{\partial y} =x+1\quad \quad \frac{\partial f}{\partial z} =e^{x} +e^{z+1}

     fx(0,3,1)=2fy(0,3,1)=1fz(0,3,1)=2\Longrightarrow \ \frac{\partial f}{\partial x}_{( 0,3,-1)} =2\quad \quad \frac{\partial f}{\partial y}_{( 0,3,-1)} =1\quad \quad \frac{\partial f}{\partial z}_{( 0,3,-1)} =2

    Tangent plane:

    (xxo)(fx)0+(yy0)(fy)0+(zz0)(fz)0=02(x)+(y3)+2(z+1)=02x+y3+2z+2=02x+y+2z=1\begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x) +( y-3) +2( z+1) & =0\\ 2x+y-3+2z+2 & =0\\ 2x+y+2z & =1 \end{aligned}

    Normal line:

    xx0(fx)0=yy0(fy)0=zz0(fz)0x2=y31=z+12\begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x}{2} & =\frac{y-3}{1} =\frac{z+1}{2} \end{aligned}