Find the partial derivative ( ∂ f ∂ y ) \displaystyle\left(\frac{\partial f}{\partial y}\right) ( ∂ y ∂ f ) and ( ∂ f ∂ x ) \displaystyle\left(\frac{\partial f}{\partial x}\right) ( ∂ x ∂ f ) of these functions using the limit definition
a. f ( x , y ) = x 2 y + 2 x + y 3 f(x, y)=x^{2} y+2 x+y^{3} f ( x , y ) = x 2 y + 2 x + y 3
f x ( x , y ) = lim h → 0 f ( x + h , y ) − f ( x , y ) h = lim h → 0 ( x + h ) 2 y + 2 ( x + h ) + y 3 − ( x 2 y + 2 x + y 3 ) h = lim h → 0 x 2 y + 2 x h y + h 2 y + 2 x + 2 h + y 3 − ( x 2 y + 2 x + y 3 ) h = lim h → 0 2 x h y + h 2 y + 2 h h = lim h → 0 2 x y + h y + 2 = 2 x y + 2 f y ( x , y ) = lim h → 0 f ( x , y + h ) − f ( x , y ) h = lim h → 0 x 2 ( y + h ) + 2 x + ( y + h ) 3 − x 2 y − 2 x − y 3 h = lim h → 0 x 2 y + x 2 h + 2 x + y 3 + 3 y 2 h + 3 y h 2 + h 3 − x 2 y − 2 x − y 3 h = lim h → 0 x 2 h + 3 y 2 h + 3 y h 2 + h 3 h = lim h → 0 x 2 + 3 y 2 + 3 y h + h 2 = x 2 + 3 y 2 \begin{aligned} f_{x}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{(x+h)^{2} y+2(x+h)+y^{3}-\left(x^{2} y+2 x+y^{3}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2} y+2 x h y+h^{2} y+2 x+2 h+y^{3}-\left(x^{2} y+2 x+y^{3}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{2 x h y+h^{2} y+2 h}{h} \\ &=\lim _{h \rightarrow 0} 2 x y+h y+2 \\ &=2 x y+2 \\ f_{y}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}(y+h)+2 x+(y+h)^{3}-x^{2} y-2 x-y^{3}}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2} y+x^{2} h+2 x+y^{3}+3 y^{2} h+3 y h^{2}+h^{3}-x^{2} y-2 x-y^{3}}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2} h+3 y^{2} h+3 y h^{2}+h^{3}}{h} \\ &=\lim _{h \rightarrow 0} x^{2}+3 y^{2}+3 y h+h^{2} \\ &=x^{2}+3 y^{2} \end{aligned} f x ( x , y ) f y ( x , y ) = h → 0 lim h f ( x + h , y ) − f ( x , y ) = h → 0 lim h ( x + h ) 2 y + 2 ( x + h ) + y 3 − ( x 2 y + 2 x + y 3 ) = h → 0 lim h x 2 y + 2 x h y + h 2 y + 2 x + 2 h + y 3 − ( x 2 y + 2 x + y 3 ) = h → 0 lim h 2 x h y + h 2 y + 2 h = h → 0 lim 2 x y + h y + 2 = 2 x y + 2 = h → 0 lim h f ( x , y + h ) − f ( x , y ) = h → 0 lim h x 2 ( y + h ) + 2 x + ( y + h ) 3 − x 2 y − 2 x − y 3 = h → 0 lim h x 2 y + x 2 h + 2 x + y 3 + 3 y 2 h + 3 y h 2 + h 3 − x 2 y − 2 x − y 3 = h → 0 lim h x 2 h + 3 y 2 h + 3 y h 2 + h 3 = h → 0 lim x 2 + 3 y 2 + 3 y h + h 2 = x 2 + 3 y 2 b. f ( x , y ) = x 2 − 4 x y + y 2 f(x, y)=x^{2}-4 x y+y^{2} f ( x , y ) = x 2 − 4 x y + y 2
Using the definition,
f x ( x , y ) = lim h → 0 f ( x + h , y ) − f ( x , y ) h = lim h → 0 ( x + h ) 2 − 4 ( x + h ) y + y 2 − ( x 2 − 4 x y + y 2 ) h = lim h → 0 x 2 + 2 x h + h 2 − 4 x y − 4 h y + y 2 − ( x 2 − 4 x y + y 2 ) h = lim h → 0 2 x h + h 2 − 4 h y h = lim h → 0 ( 2 x + h − 4 y ) = 2 x − 4 y \begin{aligned} f_{x}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-4(x+h) y+y^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-4 x y-4 h y+y^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-4 h y}{h} \\ &=\lim _{h \rightarrow 0}(2 x+h-4 y) \\ &=2 x-4 y \end{aligned} f x ( x , y ) = h → 0 lim h f ( x + h , y ) − f ( x , y ) = h → 0 lim h ( x + h ) 2 − 4 ( x + h ) y + y 2 − ( x 2 − 4 x y + y 2 ) = h → 0 lim h x 2 + 2 x h + h 2 − 4 x y − 4 h y + y 2 − ( x 2 − 4 x y + y 2 ) = h → 0 lim h 2 x h + h 2 − 4 h y = h → 0 lim ( 2 x + h − 4 y ) = 2 x − 4 y Similarly,
f y ( x , y ) = lim h → 0 f ( x , y + h ) − f ( x , y ) h = lim h → 0 x 2 − 4 x ( y + h ) + ( y + h ) 2 − ( x 2 − 4 x y + y 2 ) h = lim h → 0 x 2 − 4 x y − 4 x h + y 2 + 2 y h + h 2 − ( x 2 − 4 x y + y 2 ) h = lim h → 0 − 4 x h + 2 y h + h 2 h = lim h → 0 ( − 4 x + 2 y + h ) = − 4 x + 2 y \begin{aligned} f_{y}(x, y) &=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}-4 x(y+h)+(y+h)^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{x^{2}-4 x y-4 x h+y^{2}+2 y h+h^{2}-\left(x^{2}-4 x y+y^{2}\right)}{h} \\ &=\lim _{h \rightarrow 0} \frac{-4 x h+2 y h+h^{2}}{h} \\ &=\lim _{h \rightarrow 0}(-4 x+2 y+h) \\ &=-4 x+2 y \end{aligned} f y ( x , y ) = h → 0 lim h f ( x , y + h ) − f ( x , y ) = h → 0 lim h x 2 − 4 x ( y + h ) + ( y + h ) 2 − ( x 2 − 4 x y + y 2 ) = h → 0 lim h x 2 − 4 x y − 4 x h + y 2 + 2 y h + h 2 − ( x 2 − 4 x y + y 2 ) = h → 0 lim h − 4 x h + 2 y h + h 2 = h → 0 lim ( − 4 x + 2 y + h ) = − 4 x + 2 y c. f ( x , y ) = 2 x 3 + 3 x y − y 2 f(x, y)=2 x^{3}+3 x y-y^{2} f ( x , y ) = 2 x 3 + 3 x y − y 2
∂ f ∂ x = lim h → 0 f ( x + h , y ) − f ( x , y ) h = lim h → 0 h ( 6 x 2 + 6 x h + 2 h 2 + 3 y ) h = lim h → 0 ( 6 x 2 + 6 x h + 2 h 2 + 3 y ) = 6 x 2 + 3 y ∂ f ∂ y = lim h → 0 f ( x , y + h ) − f ( x , y ) h = lim h → 0 h ( 3 x − 2 y − h ) h = lim h → 0 ( 3 x − 2 y − h ) = 3 x − 2 y \begin{aligned} \frac{\partial f}{\partial x} &= \lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{h\left(6 x^{2}+6 x h+2 h^{2}+3 y\right)}{h} \\ &=\lim _{h \rightarrow 0}\left(6 x^{2}+6 x h+2 h^{2}+3 y\right) \\ &=6 x^{2}+3 y \\ \frac{\partial f}{\partial y} &= \lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\ &=\lim _{h \rightarrow 0} \frac{h(3 x-2 y-h)}{h} \\ &=\lim _{h \rightarrow 0}(3 x-2 y-h) \\ &=3 x-2 y \end{aligned} ∂ x ∂ f ∂ y ∂ f = h → 0 lim h f ( x + h , y ) − f ( x , y ) = h → 0 lim h h ( 6 x 2 + 6 x h + 2 h 2 + 3 y ) = h → 0 lim ( 6 x 2 + 6 x h + 2 h 2 + 3 y ) = 6 x 2 + 3 y = h → 0 lim h f ( x , y + h ) − f ( x , y ) = h → 0 lim h h ( 3 x − 2 y − h ) = h → 0 lim ( 3 x − 2 y − h ) = 3 x − 2 y Determine all the first and second order partial derivatives of the function
a. f ( x , y ) = x 2 y 3 + 3 y + x f(x, y)=x^{2} y^{3}+3 y+x f ( x , y ) = x 2 y 3 + 3 y + x
∂ f ∂ x = 2 x y 3 + 1 ∂ f ∂ y = 3 x 2 y 2 + 3 ∂ ∂ x ( ∂ f ∂ x ) = 2 y 3 ∂ ∂ y ( ∂ f ∂ x ) = 6 x y 2 ∂ ∂ x ( ∂ f ∂ y ) = 6 x y 2 ∂ ∂ y ( ∂ f ∂ y ) = 6 x 2 y \begin{aligned} \frac{\partial f}{\partial x}&= 2xy^3+1 \\ \frac{\partial f}{\partial y}&= 3x^2y^2+3 \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= 2y^3 \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= 6xy^2 \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= 6xy^2 \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= 6x^2y \\ \end{aligned} ∂ x ∂ f ∂ y ∂ f ∂ x ∂ ( ∂ x ∂ f ) ∂ y ∂ ( ∂ x ∂ f ) ∂ x ∂ ( ∂ y ∂ f ) ∂ y ∂ ( ∂ y ∂ f ) = 2 x y 3 + 1 = 3 x 2 y 2 + 3 = 2 y 3 = 6 x y 2 = 6 x y 2 = 6 x 2 y b. f ( x , y ) = x 4 sin 3 y f(x, y)=x^{4} \sin 3 y f ( x , y ) = x 4 sin 3 y
∂ f ∂ x = 4 x 3 sin 3 y ∂ f ∂ y = 3 x 4 cos 3 y ∂ ∂ x ( ∂ f ∂ x ) = 12 x 2 sin 3 y ∂ ∂ y ( ∂ f ∂ x ) = 12 x 3 cos 3 y ∂ ∂ x ( ∂ f ∂ y ) = 12 x 3 cos 3 y ∂ ∂ y ( ∂ f ∂ y ) = − 9 x 4 sin 3 y \begin{aligned} \frac{\partial f}{\partial x}&= 4x^3\sin{3y} \\ \frac{\partial f}{\partial y}&= 3x^4\cos{3y} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= 12x^2\sin{3y} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= 12x^3\cos{3y} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= 12x^3\cos{3y} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= -9x^4\sin{3y} \\ \end{aligned} ∂ x ∂ f ∂ y ∂ f ∂ x ∂ ( ∂ x ∂ f ) ∂ y ∂ ( ∂ x ∂ f ) ∂ x ∂ ( ∂ y ∂ f ) ∂ y ∂ ( ∂ y ∂ f ) = 4 x 3 sin 3 y = 3 x 4 cos 3 y = 12 x 2 sin 3 y = 12 x 3 cos 3 y = 12 x 3 cos 3 y = − 9 x 4 sin 3 y c. f ( x , y ) = x 2 y + ln ( y 2 − x ) f(x, y)=x^{2} y+\ln \left(y^{2}-x\right) f ( x , y ) = x 2 y + ln ( y 2 − x )
∂ f ∂ x = 2 x y − 1 y 2 − x ∂ f ∂ y = x 2 + 2 y y 2 − x ∂ ∂ x ( ∂ f ∂ x ) = 2 y − 1 ( y 2 − x ) 2 ∂ ∂ y ( ∂ f ∂ x ) = 2 x + 2 y ( y 2 − x ) 2 ∂ ∂ x ( ∂ f ∂ y ) = 2 x + 2 y ( y 2 − x ) 2 ∂ ∂ y ( ∂ f ∂ y ) = − 2 y 2 − 2 x ( y 2 − x ) 2 \begin{aligned} \frac{\partial f}{\partial x}&= 2xy-\frac{1}{y^2-x} \\ \frac{\partial f}{\partial y}&= x^2+\frac{2y}{y^2-x} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= 2y-\frac{1}{(y^2-x)^2} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= 2x+\frac{2y}{(y^2-x)^2} \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= 2x+\frac{2y}{(y^2-x)^2} \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= \frac{-2y^2-2x}{(y^2-x)^2} \\ \end{aligned} ∂ x ∂ f ∂ y ∂ f ∂ x ∂ ( ∂ x ∂ f ) ∂ y ∂ ( ∂ x ∂ f ) ∂ x ∂ ( ∂ y ∂ f ) ∂ y ∂ ( ∂ y ∂ f ) = 2 x y − y 2 − x 1 = x 2 + y 2 − x 2 y = 2 y − ( y 2 − x ) 2 1 = 2 x + ( y 2 − x ) 2 2 y = 2 x + ( y 2 − x ) 2 2 y = ( y 2 − x ) 2 − 2 y 2 − 2 x d. f ( x , y ) = e x y ( 2 x − y ) f(x, y)=e^{x y}(2 x-y) f ( x , y ) = e x y ( 2 x − y )
∂ f ∂ x = e x y ( 2 x y − y 2 + 2 ) ∂ f ∂ y = e x y ( 2 x 2 − x y − 1 ) ∂ ∂ x ( ∂ f ∂ x ) = e x y ( 2 x y 2 − y 3 + 4 y ) ∂ ∂ y ( ∂ f ∂ x ) = e x y ( 2 x 3 y − x y 2 + 4 x − 2 y ) ∂ ∂ x ( ∂ f ∂ y ) = e x y ( 2 x 2 y − x y 2 + 4 x − 2 y ) ∂ ∂ y ( ∂ f ∂ y ) = e x y ( 2 x 3 − x 2 y − 2 x ) \begin{aligned} \frac{\partial f}{\partial x}&= e^{xy}(2xy-y^2+2) \\ \frac{\partial f}{\partial y}&= e^{xy}(2x^2-xy-1) \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)&= e^{xy}(2xy^2-y^3+4y) \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)&= e^{xy}(2x^3y-xy^2+4x-2y) \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)&= e^{xy}(2x^2y-xy^2+4x-2y) \\ \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)&= e^{xy}(2x^3-x^2y-2x)\\ \end{aligned} ∂ x ∂ f ∂ y ∂ f ∂ x ∂ ( ∂ x ∂ f ) ∂ y ∂ ( ∂ x ∂ f ) ∂ x ∂ ( ∂ y ∂ f ) ∂ y ∂ ( ∂ y ∂ f ) = e x y ( 2 x y − y 2 + 2 ) = e x y ( 2 x 2 − x y − 1 ) = e x y ( 2 x y 2 − y 3 + 4 y ) = e x y ( 2 x 3 y − x y 2 + 4 x − 2 y ) = e x y ( 2 x 2 y − x y 2 + 4 x − 2 y ) = e x y ( 2 x 3 − x 2 y − 2 x ) Find both partial derivatives for each of the following two variables functions
a. g ( x , y ) = y e x + y g(x, y)=y e^{x+y} g ( x , y ) = y e x + y
g ( x , y ) = y e x + y g x ( x , y ) = y e x + y g y ( x , y ) = e x + y + y e x + y \begin{aligned} g(x, y)=& y e^{x+y} \\ g_{x}(x, y) &=y e^{x+y} \\ g_{y}(x, y) &=e^{x+y}+y e^{x+y} \end{aligned} g ( x , y ) = g x ( x , y ) g y ( x , y ) y e x + y = y e x + y = e x + y + y e x + y b. h ( x , y ) = x sin y − y cos x h(x, y)=x \sin y-y \cos x h ( x , y ) = x sin y − y cos x
h ( x , y ) = x sin y − y cos x h x ( x , y ) = sin y + y sin x h y ( x , y ) = x cos y − cos x \begin{aligned} &h(x, y)=x \sin y-y \cos x \\ &h_{x}(x, y)=\sin y+y \sin x \\ &h_{y}(x, y)=x \cos y-\cos x \end{aligned} h ( x , y ) = x sin y − y cos x h x ( x , y ) = sin y + y sin x h y ( x , y ) = x cos y − cos x c. p ( x , y ) = x y + y 2 p(x, y)=x^{y}+y^{2} p ( x , y ) = x y + y 2
p ( x , y ) = x y + y 2 p x ( x , y ) = y x y − 1 p y ( x , y ) = x y ln x + 2 y \begin{aligned} p(x, y)=& x^{y}+y^{2} \\ p_{x}(x, y) &=y x^{y-1} \\ p_{y}(x, y) &=x^{y} \ln x+2 y \end{aligned} p ( x , y ) = p x ( x , y ) p y ( x , y ) x y + y 2 = y x y − 1 = x y ln x + 2 y d. U ( x , y ) = 9 y 3 x − y U(x, y)=\frac{9 y^{3}}{x-y} U ( x , y ) = x − y 9 y 3
∂ U ∂ x = U x = ( x − y ) ( 0 ) − 9 y 3 ( 1 ) ( x − y ) 2 = − 9 y 3 ( x − y ) 2 ∂ U ∂ y = U y = ( x − y ) ( 27 y 2 ) − 9 y 3 ( − 1 ) ( x − y ) 2 = 27 x y 2 − 18 y 3 ( x − y ) 2 \begin{aligned} &\frac{\partial U}{\partial x}=U_{x}=\frac{(x-y)(0)-9 y^{3}(1)}{(x-y)^{2}}=\frac{-9 y^{3}}{(x-y)^{2}} \\ &\frac{\partial U}{\partial y}=U_{y}=\frac{(x-y)\left(27 y^{2}\right)-9 y^{3}(-1)}{(x-y)^{2}}=\frac{27 x y^{2}-18 y^{3}}{(x-y)^{2}} \end{aligned} ∂ x ∂ U = U x = ( x − y ) 2 ( x − y ) ( 0 ) − 9 y 3 ( 1 ) = ( x − y ) 2 − 9 y 3 ∂ y ∂ U = U y = ( x − y ) 2 ( x − y ) ( 27 y 2 ) − 9 y 3 ( − 1 ) = ( x − y ) 2 27 x y 2 − 18 y 3 For f ( x , y , z ) f(x, y, z) f ( x , y , z ) , use the implicit function theorem to find d y / d x d y / d x d y / d x and d y / d z d y / d z d y / d z
a. f ( x , y , z ) = x 2 y 3 + z 2 + x y z f(x, y, z)=x^{2} y^{3}+z^{2}+x y z f ( x , y , z ) = x 2 y 3 + z 2 + x yz
f ( x , y , z ) = x 2 y 3 + z 2 + x y z d y d x = − f x f y = − 2 x y 3 + y z 3 x 2 y 2 + x z d y d z = − f z f y = − 2 z + x y 3 x 2 y 2 + x z \begin{gathered} f(x, y, z)=x^{2} y^{3}+z^{2}+x y z \\ \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{2 x y^{3}+y z}{3 x^{2} y^{2}+x z} \\ \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 z+x y}{3 x^{2} y^{2}+x z} \end{gathered} f ( x , y , z ) = x 2 y 3 + z 2 + x yz d x d y = − f y f x = − 3 x 2 y 2 + x z 2 x y 3 + yz d z d y = − f y f z = − 3 x 2 y 2 + x z 2 z + x y b. f ( x , y , z ) = x 3 z 2 + y 3 + 4 x y z f(x, y, z)=x^{3} z^{2}+y^{3}+4 x y z f ( x , y , z ) = x 3 z 2 + y 3 + 4 x yz
f ( x , y , z ) = x 3 z 2 + y 3 + 4 x y z d y d x = − f x f y = − 3 x 2 z 2 + 4 y z 3 y 2 + 4 x z d y d z = − f z f y = − 2 x 3 z + 4 x y 3 y 2 + 4 x z \begin{gathered} f(x, y, z)=x^{3} z^{2}+y^{3}+4 x y z \\ \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{3 x^{2} z^{2}+4 y z}{3 y^{2}+4 x z} \\ \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 x^{3} z+4 x y}{3 y^{2}+4 x z} \end{gathered} f ( x , y , z ) = x 3 z 2 + y 3 + 4 x yz d x d y = − f y f x = − 3 y 2 + 4 x z 3 x 2 z 2 + 4 yz d z d y = − f y f z = − 3 y 2 + 4 x z 2 x 3 z + 4 x y c. f ( x , y , z ) = 3 x 2 y 3 + x z 2 y 2 + y 3 z x 4 + y 2 z f(x, y, z)=3 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z f ( x , y , z ) = 3 x 2 y 3 + x z 2 y 2 + y 3 z x 4 + y 2 z
f ( x , y , z ) = 3 x 2 y 3 + x z 2 y 2 + y 3 z x 4 + y 2 z d y d x = − f x f y = − 6 x y 3 + z 2 y 2 + 4 y 3 z x 3 9 x 2 y 2 + 2 x z 2 y + 3 y 2 z x 4 + 2 y z d y d z = − f z f y = − 2 x z y 2 + y 3 x 4 + y 2 9 x 2 y 2 + 2 x z 2 y + 3 y 2 z x 4 + 2 y z \begin{gathered} f(x, y, z)=3 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z \\ \frac{d y}{d x}=-\frac{f x}{f y}=-\frac{6 x y^{3}+z^{2} y^{2}+4 y^{3} z x^{3}}{9 x^{2} y^{2}+2 x z^{2} y+3 y^{2} z x^{4}+2 y z} \\ \frac{d y}{d z}=-\frac{f z}{f y}=-\frac{2 x z y^{2}+y^{3} x^{4}+y^{2}}{9 x^{2} y^{2}+2 x z^{2} y+3 y^{2} z x^{4}+2 y z} \end{gathered} f ( x , y , z ) = 3 x 2 y 3 + x z 2 y 2 + y 3 z x 4 + y 2 z d x d y = − f y f x = − 9 x 2 y 2 + 2 x z 2 y + 3 y 2 z x 4 + 2 yz 6 x y 3 + z 2 y 2 + 4 y 3 z x 3 d z d y = − f y f z = − 9 x 2 y 2 + 2 x z 2 y + 3 y 2 z x 4 + 2 yz 2 x z y 2 + y 3 x 4 + y 2 Find ∂ F ∂ s \frac{\partial F}{\partial s} ∂ s ∂ F and ∂ F ∂ t \frac{\partial F}{\partial t} ∂ t ∂ F , if applicable, for the following composite functions
a. F = sin ( x + y ) F=\sin (x+y) F = sin ( x + y ) where x = 2 s t x=2st x = 2 s t and y = s 2 + t 2 y=s^2+t^2 y = s 2 + t 2
∂ F ∂ s = ∂ F ∂ x ∂ x ∂ s + ∂ F ∂ y ∂ y ∂ s = cos ( x + y ) ( 2 t ) + cos ( x + y ) ( 2 s ) = 2 t cos ( 2 s t + s 2 + t 2 ) + 2 s cos ( s t + s 2 + t 2 ) = 2 cos ( ( s + t ) 2 ) ( s + t ) \begin{aligned} \frac{\partial F}{\partial s}&=\frac{\partial F}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial s} \\ &=\cos (x+y)(2t)+\cos (x+y)(2s) \\ &=2t\cos (2st+s^2+t^2)+2s\cos (st+s^2+t^2) \\ &= 2\cos ((s+t)^2)(s+t) \end{aligned} ∂ s ∂ F = ∂ x ∂ F ∂ s ∂ x + ∂ y ∂ F ∂ s ∂ y = cos ( x + y ) ( 2 t ) + cos ( x + y ) ( 2 s ) = 2 t cos ( 2 s t + s 2 + t 2 ) + 2 s cos ( s t + s 2 + t 2 ) = 2 cos (( s + t ) 2 ) ( s + t ) ∂ F ∂ t = ∂ F ∂ x ∂ x ∂ t + ∂ F ∂ y ∂ y ∂ t = cos ( x + y ) ( 2 s ) + cos ( x + y ) ( 2 t ) = 2 cos ( ( s + t ) 2 ) ( s + t ) \begin{aligned} \frac{\partial F}{\partial t}&=\frac{\partial F}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial t} \\ &=\cos (x+y)(2s)+\cos (x+y)(2t) \\ &= 2\cos ((s+t)^2)(s+t) \end{aligned} ∂ t ∂ F = ∂ x ∂ F ∂ t ∂ x + ∂ y ∂ F ∂ t ∂ y = cos ( x + y ) ( 2 s ) + cos ( x + y ) ( 2 t ) = 2 cos (( s + t ) 2 ) ( s + t ) b. F = ln ( x 2 + y ) F=\ln \left(x^{2}+y\right) F = ln ( x 2 + y ) where x = e ( s + t 2 ) x=\mathrm{e}^{(s+t 2)} x = e ( s + t 2 ) and y = s 2 + t y=s^{2}+t y = s 2 + t
∂ F ∂ s = ∂ F ∂ x ∂ x ∂ s + ∂ F ∂ y ∂ y ∂ s = 2 x x 2 + y e s + t 2 + 1 x 2 + y 2 s = 2 x 2 + y ( x e s + t 2 + s ) \begin{aligned} \frac{\partial F}{\partial s} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial s} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial s}\\ & =\frac{2x}{x^{2} +y} e^{s+t^{2}} +\frac{1}{x^{2} +y} 2s\\ & =\frac{2}{x^{2} +y}\left( xe^{s+t^{2}} +s\right) \end{aligned} ∂ s ∂ F = ∂ x ∂ F ∂ s ∂ x + ∂ y ∂ F ∂ s ∂ y = x 2 + y 2 x e s + t 2 + x 2 + y 1 2 s = x 2 + y 2 ( x e s + t 2 + s ) ∂ F ∂ t = ∂ F ∂ x ∂ x ∂ t + ∂ F ∂ y ∂ y ∂ t = 2 x x 2 + y 2 t e s + t 2 + 1 x 2 + y ( 1 ) = 1 x 2 + y ( 4 x t e s + t 2 + 1 ) \begin{aligned} \frac{\partial F}{\partial t} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial t} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial t}\\ & =\frac{2x}{x^{2} +y} 2te^{s+t^{2}} +\frac{1}{x^{2} +y}( 1)\\ & =\frac{1}{x^{2} +y}\left( 4xte^{s+t^{2}} +1\right) \end{aligned} ∂ t ∂ F = ∂ x ∂ F ∂ t ∂ x + ∂ y ∂ F ∂ t ∂ y = x 2 + y 2 x 2 t e s + t 2 + x 2 + y 1 ( 1 ) = x 2 + y 1 ( 4 x t e s + t 2 + 1 ) c. F = x 2 y 2 F=x^{2} y^{2} F = x 2 y 2 where x = s cos t x=s \cos t x = s cos t and y = s sin t y=s \sin t y = s sin t
∂ F ∂ s = ∂ F ∂ x ∂ x ∂ s + ∂ F ∂ y ∂ y ∂ s = 2 x y 2 cos t + 2 x 2 y sin t = 2 ( s cos t ) ( s 2 sin 2 t ) ( cos t ) + 2 ( s 2 cos 2 t ) ( s sin t ) ( sin t ) = 2 s 3 cos 2 t sin 2 t + 2 s 3 cos 2 t sin 2 t = 4 s 3 cos 2 t sin 2 t = 4 s 3 ( cos t sin t ) 2 = 4 s 3 ( 1 2 sin 2 t ) 2 = s 3 ( sin 2 t ) 2 \begin{aligned} \frac{\partial F}{\partial s} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial s} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial s}\\ & =2xy^{2}\cos t+2x^{2} y\sin t\\ & =2( s\cos t)\left( s^{2}\sin^{2} t\right)(\cos t) +2\left( s^{2}\cos^{2} t\right)( s\sin t)(\sin t)\\ & =2s^{3}\cos^{2} t\sin^{2} t+2s^{3}\cos^{2} t\sin^{2} t\\ & =4s^{3}\cos^{2} t\sin^{2} t\\ & =4s^{3}(\cos t\sin t)^{2}\\ & =4s^{3}\left(\frac{1}{2}\sin 2t\right)^{2}\\ & =s^{3}(\sin 2t)^{2} \end{aligned} ∂ s ∂ F = ∂ x ∂ F ∂ s ∂ x + ∂ y ∂ F ∂ s ∂ y = 2 x y 2 cos t + 2 x 2 y sin t = 2 ( s cos t ) ( s 2 sin 2 t ) ( cos t ) + 2 ( s 2 cos 2 t ) ( s sin t ) ( sin t ) = 2 s 3 cos 2 t sin 2 t + 2 s 3 cos 2 t sin 2 t = 4 s 3 cos 2 t sin 2 t = 4 s 3 ( cos t sin t ) 2 = 4 s 3 ( 2 1 sin 2 t ) 2 = s 3 ( sin 2 t ) 2 ∂ F ∂ t = ∂ F ∂ x ∂ x ∂ t + ∂ F ∂ y ∂ y ∂ t = 2 x y 2 ( − s sin t ) + 2 x 2 y ( s cos t ) = 2 x 2 y s cos t − 2 x y 2 s sin t = 2 ( s 2 cos 2 t ) ( s sin t ) s cos t − 2 ( s cos t ) ( s 2 sin 2 t ) s sin t = 2 s 4 cos 3 t sin t − 2 s 4 cos t sin 3 t = 2 s 4 ( cos t sin t ) ( cos 2 t − sin 2 t ) = 2 s 4 ( 1 2 sin 2 t ) ( cos 2 t ) = s 4 sin 2 t cos 2 t \begin{aligned} \frac{\partial F}{\partial t} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial t} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial t}\\ & =2xy^{2}( -s\sin t) +2x^{2} y( s\cos t)\\ & =2x^{2} ys\cos t-2xy^{2} s\sin t\\ & =2\left( s^{2}\cos^{2} t\right)( s\sin t) s\cos t-2( s\cos t)\left( s^{2}\sin^{2} t\right) s\sin t\\ & =2s^{4}\cos^{3} t\sin t-2s^{4}\cos t\sin^{3} t\\ & =2s^{4}(\cos t\sin t)\left(\cos^{2} t-\sin^{2} t\right)\\ & =2s^{4}\left(\frac{1}{2}\sin 2t\right)(\cos 2t)\\ & =s^{4}\sin 2t\cos 2t \end{aligned} ∂ t ∂ F = ∂ x ∂ F ∂ t ∂ x + ∂ y ∂ F ∂ t ∂ y = 2 x y 2 ( − s sin t ) + 2 x 2 y ( s cos t ) = 2 x 2 ys cos t − 2 x y 2 s sin t = 2 ( s 2 cos 2 t ) ( s sin t ) s cos t − 2 ( s cos t ) ( s 2 sin 2 t ) s sin t = 2 s 4 cos 3 t sin t − 2 s 4 cos t sin 3 t = 2 s 4 ( cos t sin t ) ( cos 2 t − sin 2 t ) = 2 s 4 ( 2 1 sin 2 t ) ( cos 2 t ) = s 4 sin 2 t cos 2 t d. F = x y + y z 2 F=xy+y \mathrm{z}^{2} F = x y + y z 2 where x = e t , y = e t sin t x=\mathrm{e}^{t}, y=\mathrm{e}^{t} \sin t x = e t , y = e t sin t and z = e t cos t \mathrm{z}=\mathrm{e}^{t} \cos t z = e t cos t
d F d t = ∂ F ∂ x ∂ x ∂ t + ∂ F ∂ y ∂ y ∂ t + ∂ F ∂ z ∂ z ∂ t = y e t + ( x + z 2 ) ( e t cos t + sin t e t ) + 2 y z ( − e t sin t + cos t e t ) = y e t + x e t cos t + x sin t e t + z 2 e t cos t + z 2 sin t e t − 2 y z e t sin t + 2 y z cos t e t = y e t + e t cos t ( x + z 2 + 2 y z ) + e t sin t ( x + z 2 − 2 y z ) = e t sin t ⋅ e t + e t cos t ( e t + e 2 t cos t + 2 e 2 t sin t cos t ) + e t sin t ( e t + e 2 t cos 2 t − 2 e 2 t sin t cos t ) = e 2 t sin t + e 2 t cos t + e 3 t cos 3 t + 2 e 2 t sin t cos 2 t + e 2 t sin t + e 3 t sin t cos 2 t − 2 e 3 t sin 2 t cos t = 2 e 2 t sin t + e 2 t cos t + e 3 t cos 3 t + 3 e 3 t sin t cos 2 t − 2 e 3 t sin 2 t cos t = e 2 t ( 2 sin t + cos t ) + e 3 t ( cos 3 t + 3 sin t cos 2 t − 2 sin 2 t cos t ) \begin{aligned} \frac{dF}{dt} & =\frac{\partial F}{\partial x}\frac{\partial x}{\partial t} +\frac{\partial F}{\partial y}\frac{\partial y}{\partial t} +\frac{\partial F}{\partial z}\frac{\partial z}{\partial t}\\ & =ye^{t} +\left( x+z^{2}\right)\left( e^{t}\cos t+\sin^{t} e^{t}\right) +2yz\left( -e^{t}\sin t+\cos te^{t}\right)\\ & =ye^{t} +xe^{t}\cos t+x\sin^{t} e^{t} +z^{2} e^{t}\cos t+z^{2}\sin te^{t} -2yze^{t}\sin t+2yz\cos te^{t}\\ & =ye^{t} +e^{t}\cos t\left( x+z^{2} +2yz\right) +e^{t}\sin t\left( x+z^{2} -2yz\right)\\ & =e^{t}\sin t\cdot e^{t} +e^{t}\cos t\left( e^{t} +e^{2t}\cos t+2e^{2t}\sin t\cos t\right)\\ & \ \ \ \ \ +e^{t}\sin t\left( e^{t} +e^{2t}\cos^{2} t-2e^{2t}\sin t\cos t\right)\\ & =e^{2t}\sin t+e^{2t}\cos t+e^{3t}\cos^{3} t+2e^{2t}\sin t\cos^{2} t+e^{2t}\sin t+e^{3t}\sin t\cos^{2} t\\ & \ \ \ \ \ -2e^{3} t\sin^{2} t\cos t\\ & =2e^{2t}\sin t+e^{2t}\cos t+e^{3t}\cos^{3} t+3e^{3t}\sin t\cos^{2} t-2e^{3t}\sin^{2} t\cos t\\ & =e^{2t}( 2\sin t+\cos t) +e^{3t}\left(\cos^{3} t+3\sin t\cos^{2} t-2\sin^{2} t\cos t\right) \end{aligned} d t d F = ∂ x ∂ F ∂ t ∂ x + ∂ y ∂ F ∂ t ∂ y + ∂ z ∂ F ∂ t ∂ z = y e t + ( x + z 2 ) ( e t cos t + sin t e t ) + 2 yz ( − e t sin t + cos t e t ) = y e t + x e t cos t + x sin t e t + z 2 e t cos t + z 2 sin t e t − 2 yz e t sin t + 2 yz cos t e t = y e t + e t cos t ( x + z 2 + 2 yz ) + e t sin t ( x + z 2 − 2 yz ) = e t sin t ⋅ e t + e t cos t ( e t + e 2 t cos t + 2 e 2 t sin t cos t ) + e t sin t ( e t + e 2 t cos 2 t − 2 e 2 t sin t cos t ) = e 2 t sin t + e 2 t cos t + e 3 t cos 3 t + 2 e 2 t sin t cos 2 t + e 2 t sin t + e 3 t sin t cos 2 t − 2 e 3 t sin 2 t cos t = 2 e 2 t sin t + e 2 t cos t + e 3 t cos 3 t + 3 e 3 t sin t cos 2 t − 2 e 3 t sin 2 t cos t = e 2 t ( 2 sin t + cos t ) + e 3 t ( cos 3 t + 3 sin t cos 2 t − 2 sin 2 t cos t ) Find d y / d x d y / d x d y / d x and d y / d z d y / d z d y / d z (if applicable) for each of the following
a. 7 x 2 + 2 x y 2 + 9 y 4 = 0 7 x^{2}+2 x y^{2}+9 y^{4}=0 7 x 2 + 2 x y 2 + 9 y 4 = 0
d y d x = − ∂ F ∂ x ∂ F ∂ y = − 14 x + 2 y 2 36 y 2 + 4 x y \begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{14x+2y^{2}}{36y^{2} +4xy} \end{aligned} d x d y = − ∂ y ∂ F ∂ x ∂ F = − 36 y 2 + 4 x y 14 x + 2 y 2 b. x 3 z 2 + y 3 + 4 x y z = 0 x^{3} z^{2}+y^{3}+4 x y z=0 x 3 z 2 + y 3 + 4 x yz = 0
d y d x = − ∂ F ∂ x ∂ F ∂ y = − 3 x 2 z 2 + 4 y z 3 y 2 + 4 x z d y d z = − ∂ F ∂ z ∂ F ∂ y = − 2 x 3 z + 4 x y 3 y 2 + 4 x z \begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{3x^{2} z^{2} +4yz}{3y^{2} +4xz}\\ \frac{dy}{dz} & =-\frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial y}} =-\frac{2x^{3} z+4xy}{3y^{2} +4xz} \end{aligned} d x d y d z d y = − ∂ y ∂ F ∂ x ∂ F = − 3 y 2 + 4 x z 3 x 2 z 2 + 4 yz = − ∂ y ∂ F ∂ z ∂ F = − 3 y 2 + 4 x z 2 x 3 z + 4 x y c. 3 x 2 y 3 + x z 2 y 2 + y 3 z x 4 + y 2 z = 0 3 x^{2} y^{3}+x z^{2} y^{2}+y^{3} z x^{4}+y^{2} z=0 3 x 2 y 3 + x z 2 y 2 + y 3 z x 4 + y 2 z = 0
d y d x = − ∂ F ∂ x ∂ F ∂ y = − 6 x y 3 + z 2 y 2 + 4 y 3 z x 3 9 x 2 y 2 + 2 x z 2 y + 3 y 2 z x 4 + 2 y z d y d z = − ∂ F ∂ z ∂ F ∂ y = − 2 x z y 2 + y 3 x 4 + y 2 9 x 2 y 2 + 2 x z 2 y + 3 y z x 4 + 2 y z \begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{6xy^{3} +z^{2} y^{2} +4y^{3} zx^{3}}{9x^{2} y^{2} +2xz^{2} y+3y^{2} zx^{4} +2yz}\\ \frac{dy}{dz} & =-\frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial y}} =-\frac{2xzy^{2} +y^{3} x^{4} +y^{2}}{9x^{2} y^{2} +2xz^{2} y+3y^{z} x^{4} +2yz} \end{aligned} d x d y d z d y = − ∂ y ∂ F ∂ x ∂ F = − 9 x 2 y 2 + 2 x z 2 y + 3 y 2 z x 4 + 2 yz 6 x y 3 + z 2 y 2 + 4 y 3 z x 3 = − ∂ y ∂ F ∂ z ∂ F = − 9 x 2 y 2 + 2 x z 2 y + 3 y z x 4 + 2 yz 2 x z y 2 + y 3 x 4 + y 2 d. y 5 + x 2 y 3 = 1 + y exp ( x 2 ) y^{5}+x^{2} y^{3}=1+y \exp \left(x^{2}\right) y 5 + x 2 y 3 = 1 + y exp ( x 2 )
d y d x = − ∂ F ∂ x ∂ F ∂ y = − 2 x y ( y 2 − e x 2 ) 5 y 4 + 3 x 2 y 2 − e x 2 \begin{aligned} \frac{dy}{dx} & =-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} =-\frac{2xy\left( y^{2} -e^{x^{2}}\right)}{5y^{4} +3x^{2} y^{2} -e^{x^{2}}} \end{aligned} d x d y = − ∂ y ∂ F ∂ x ∂ F = − 5 y 4 + 3 x 2 y 2 − e x 2 2 x y ( y 2 − e x 2 ) a. In polar coordinates, x = r cos θ , y = r sin θ x=r \cos \theta, y=r \sin \theta x = r cos θ , y = r sin θ , show that ∂ ( x , y ) ∂ ( r , θ ) = r \frac{\partial(x, y)}{\partial(r, \theta)}=r ∂ ( r , θ ) ∂ ( x , y ) = r
For x = r cos θ , ∂ x ∂ r = cos θ , ∂ x ∂ θ = − r sin θ y = r sin θ , ∂ y ∂ r = sin θ , ∂ y ∂ θ = r cos θ ∴ ∂ ( x , y ) ∂ ( r , θ ) = ∣ ∂ x ∂ r ∂ x ∂ θ ∂ y ∂ r ∂ y ∂ θ ∣ = ∣ cos θ − r sin θ sin θ r cos θ ∣ = r . \begin{aligned} & \text { For } x=r \cos \theta, \frac{\partial x}{\partial r}=\cos \theta, \frac{\partial x}{\partial \theta}=-r \sin \theta \\ & y=r \sin \theta, \frac{\partial y}{\partial r}=\sin \theta, \frac{\partial y}{\partial \theta}=r \cos \theta \\ & \therefore \quad \frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right|=\left|\begin{array}{cc}\cos \theta & -r \sin \theta \\\sin \theta & r \cos \theta\end{array}\right|=r . \end{aligned} For x = r cos θ , ∂ r ∂ x = cos θ , ∂ θ ∂ x = − r sin θ y = r sin θ , ∂ r ∂ y = sin θ , ∂ θ ∂ y = r cos θ ∴ ∂ ( r , θ ) ∂ ( x , y ) = ∣ ∣ ∂ r ∂ x ∂ r ∂ y ∂ θ ∂ x ∂ θ ∂ y ∣ ∣ = ∣ ∣ cos θ sin θ − r sin θ r cos θ ∣ ∣ = r . b. Obtain the Jacobian J J J of the transformation s = 2 x + y , t = x − 2 y s=2 x+y, t=x-2 y s = 2 x + y , t = x − 2 y and determine the inverse of the transformation J 1 J_{1} J 1 . Confirm that J 1 = J − 1 J_{1}=J^{-1} J 1 = J − 1 .
J = ∂ ( s , t ) ∂ ( x , y ) = ∣ 2 1 1 − 2 ∣ = − 5 \begin{aligned} J & =\frac{\partial ( s,t)}{\partial ( x,y)}\\ & =\left| \begin{matrix} 2 & 1\\ 1 & -2 \end{matrix}\right| \\ & =-5 \end{aligned} J = ∂ ( x , y ) ∂ ( s , t ) = ∣ ∣ 2 1 1 − 2 ∣ ∣ = − 5 x = 1 5 ( 2 s + t ) y = 1 5 ( s − 2 t ) J 1 = ∂ ( x , y ) ∂ ( s , t ) = ∣ 2 5 1 5 1 5 − 2 5 ∣ = − 1 5 \begin{array}{l} x=\frac{1}{5}( 2s+t) \quad \quad y=\frac{1}{5}( s-2t)\\ \\ \begin{aligned} J_{1} & =\frac{\partial ( x,y)}{\partial ( s,t)}\\ & =\left| \begin{matrix} \frac{2}{5} & \frac{1}{5}\\ \frac{1}{5} & -\frac{2}{5} \end{matrix}\right| \\ & =-\frac{1}{5} \end{aligned} \end{array} x = 5 1 ( 2 s + t ) y = 5 1 ( s − 2 t ) J 1 = ∂ ( s , t ) ∂ ( x , y ) = ∣ ∣ 5 2 5 1 5 1 − 5 2 ∣ ∣ = − 5 1 ∴ J 1 = J − 1 \therefore J_{1} =J^{-1} ∴ J 1 = J − 1 c. Show that if x + y = u x+y=\mathrm{u} x + y = u and y = u v y=\mathrm{uv} y = uv , then ∂ ( x , y ) ∂ ( u , v ) = u \frac{\partial(x, y)}{\partial(u, v)}=u ∂ ( u , v ) ∂ ( x , y ) = u .
x + u v = u ⟹ x = u − u v d x d u = 1 − v d x d v = − 1 \begin{array}{l} x+uv=u\Longrightarrow x=u-uv\\ \frac{dx}{du} =1-v\\ \frac{dx}{dv} =-1 \end{array} x + uv = u ⟹ x = u − uv d u d x = 1 − v d v d x = − 1 y = u v d y d u = v d y d v = u \begin{array}{l} y=uv\\ \frac{dy}{du} =v\\ \frac{dy}{dv} =u \end{array} y = uv d u d y = v d v d y = u ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ y ∂ u ∂ x ∂ v ∂ y ∂ v ∣ = ∣ 1 − v v − u u ∣ = u − u v + u v = u \begin{aligned} \frac{\partial ( x,y)}{\partial ( u,v)} & =\left| \begin{matrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u}\\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{matrix}\right| \\ & =\left| \begin{matrix} 1-v & v\\ -u & u \end{matrix}\right| \\ & =u-uv+uv\\ & =u\ \end{aligned} ∂ ( u , v ) ∂ ( x , y ) = ∣ ∣ ∂ u ∂ x ∂ v ∂ x ∂ u ∂ y ∂ v ∂ y ∣ ∣ = ∣ ∣ 1 − v − u v u ∣ ∣ = u − uv + uv = u d. Verify whether the functions u = x + y 1 − x y u=\frac{x+y}{1-x y} u = 1 − x y x + y and v = tan − 1 x + tan − 1 y v=\tan ^{-1} x+\tan ^{-1} y v = tan − 1 x + tan − 1 y are functionally dependent.
∂ ( u , v ) ∂ ( x , y ) = ∣ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∣ = ∣ 1 + y 2 ( 1 − x y ) 2 1 + x 2 ( 1 − x y ) 2 1 1 + x 2 1 1 + y 2 ∣ = 1 ( 1 − x y ) 2 − 1 ( 1 − x y ) 2 = 0 \begin{aligned} \frac{\partial ( u,v)}{\partial ( x,y)} & =\left| \begin{matrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{matrix}\right| =\left| \begin{matrix} \frac{1+y^{2}}{( 1-xy)^{2}} & \frac{1+x^{2}}{( 1-xy)^{2}}\\ \frac{1}{1+x^{2}} & \frac{1}{1+y^{2}} \end{matrix}\right| \\ & =\frac{1}{( 1-xy)^{2}} -\frac{1}{( 1-xy)^{2}}\\ & =0 \end{aligned} ∂ ( x , y ) ∂ ( u , v ) = ∣ ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ ∣ = ∣ ∣ ( 1 − x y ) 2 1 + y 2 1 + x 2 1 ( 1 − x y ) 2 1 + x 2 1 + y 2 1 ∣ ∣ = ( 1 − x y ) 2 1 − ( 1 − x y ) 2 1 = 0 e. If x = u v , u + v u − v x=\mathrm{uv}, \frac{u+v}{u-v} x = uv , u − v u + v , find ∂ ( u , v ) ∂ ( x , y ) \frac{\partial(u, v)}{\partial(x, y)} ∂ ( x , y ) ∂ ( u , v ) .
∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ y ∂ u ∂ x ∂ v ∂ y ∂ v ∣ = ∣ v u − 2 v ( u − v ) 2 − 2 u ( u − v ) 2 ∣ = 2 u v ( u − v ) 2 + 2 u v ( u − v ) 2 = 4 u v ( u − v ) 2 ∂ ( u , v ) ∂ ( x , y ) = ( u − v ) 2 4 u v \begin{aligned} \frac{\partial ( x,y)}{\partial ( u,v)} & =\left| \begin{matrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u}\\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{matrix}\right| =\left| \begin{matrix} v & u\\ -\frac{2v}{( u-v)^{2}} & -\frac{2u}{( u-v)^{2}} \end{matrix}\right| \\ & =\frac{2uv}{( u-v)^{2}} +\frac{2uv}{( u-v)^{2}}\\ & =\frac{4uv}{( u-v)^{2}}\\ \frac{\partial ( u,v)}{\partial ( x,y)} & =\frac{( u-v)^{2}}{4uv} \end{aligned} ∂ ( u , v ) ∂ ( x , y ) ∂ ( x , y ) ∂ ( u , v ) = ∣ ∣ ∂ u ∂ x ∂ v ∂ x ∂ u ∂ y ∂ v ∂ y ∣ ∣ = ∣ ∣ v − ( u − v ) 2 2 v u − ( u − v ) 2 2 u ∣ ∣ = ( u − v ) 2 2 uv + ( u − v ) 2 2 uv = ( u − v ) 2 4 uv = 4 uv ( u − v ) 2 a. How sensitive is the volume V = π r 2 h V=\pi r^{2} h V = π r 2 h of a right circular cylinder to small changes in its radius and height near the point ( r 0 , h 0 ) = ( 1 , 3 ) \left(r_{0}, h_{0}\right)=(1,3) ( r 0 , h 0 ) = ( 1 , 3 ) ?
By increment method, we get
Δ V ≈ ( ∂ V ∂ r ) ( r 0 , h 0 ) Δ r + ( ∂ V ∂ h ) ( r 0 , h 0 ) Δ h = V r ( 1 , 3 ) Δ r + V h ( 1 , 3 ) Δ h = ( 2 π r h ) ( 1 , 3 ) Δ r + ( π r 2 ) ( 1 , 3 ) ⋅ Δ h = 6 π ⋅ Δ r + π ⋅ Δ h \begin{aligned} \Delta V & \approx\left(\frac{\partial V}{\partial r}\right)_{\left(r_{0}, h_{0}\right)} \Delta r+\left(\frac{\partial V}{\partial h}\right)_{\left(r_{0}, h_{0}\right)} \Delta h \\ &=V_{r}(1,3) \Delta r+V_{h}(1,3) \Delta h \\ &=(2 \pi r h)_{(1,3)} \Delta r+\left(\pi r^{2}\right)_{(1,3)} \cdot \Delta h \\ &=6 \pi \cdot \Delta r+\pi \cdot \Delta h \end{aligned} Δ V ≈ ( ∂ r ∂ V ) ( r 0 , h 0 ) Δ r + ( ∂ h ∂ V ) ( r 0 , h 0 ) Δ h = V r ( 1 , 3 ) Δ r + V h ( 1 , 3 ) Δ h = ( 2 π r h ) ( 1 , 3 ) Δ r + ( π r 2 ) ( 1 , 3 ) ⋅ Δ h = 6 π ⋅ Δ r + π ⋅ Δ h The above result shows that a one-unit change in r r r will change V V V nearly by π \pi π units and a one-unit change in h h h will change V V V nearly by 6 π 6 \pi 6 π units.
Therefore, the volume of a cylinder with radius r = 1 r=1 r = 1 and height h = 3 h=3 h = 3 is nearly 6 times as sensitive to small change in r r r as it is to small change in h h h Fig. 4.3(i).
In contrast, if value of r r r and h h h are reversed, so that r = 3 r=3 r = 3 and h = 1 h=1 h = 1 , then Δ V ≈ 6 π ⋅ Δ r + 9 π \Delta V \approx 6 \pi \cdot \Delta r+9 \pi Δ V ≈ 6 π ⋅ Δ r + 9 π . Δ h \Delta h Δ h .
The volume is now more sensitive to small change in h h h to that it is to change in r r r .
Thus the sensitivity to change depends not only on the increment but also on the relative size of r r r and h h h (See Fig. 4.3 (ii)).
b. If r r r is measured with an accuracy of ± 1 % \pm 1 \% ± 1% and h h h with an accuracy of ± 0.5 % \pm 0.5 \% ± 0.5% , about how accurately can V V V be calculated from the formula V = π r 2 h V=\pi r^{2} h V = π r 2 h ?
For V = π r 2 h V=\pi r^{2} h V = π r 2 h or log V = log π + 2 log r + log h \log V=\log \pi+2 \log r+\log h log V = log π + 2 log r + log h , increment approximation implies
Δ V V ≈ 2 Δ r r + Δ h h . \frac{\Delta V}{V} \approx 2 \frac{\Delta r}{r}+\frac{\Delta h}{h} . V Δ V ≈ 2 r Δ r + h Δ h . Given, Δ r r × 100 = ± 1 , Δ h h × 100 = ± 0.5 = 1 2 } \left.\quad \begin{array}{l}\frac{\Delta r}{r} \times 100=\pm 1, \\ \frac{\Delta h}{h} \times 100=\pm 0.5=\frac{1}{2}\end{array}\right\} r Δ r × 100 = ± 1 , h Δ h × 100 = ± 0.5 = 2 1 } so that ∣ Δ r r ∣ ≤ 1 100 ∣ Δ h h ∣ ≤ 1 200 } \left.\begin{array}{l}\left|\frac{\Delta r}{r}\right| \leq \frac{1}{100} \\ \left|\frac{\Delta h}{h}\right| \leq \frac{1}{200}\end{array}\right\} ∣ ∣ r Δ r ∣ ∣ ≤ 100 1 ∣ ∣ h Δ h ∣ ∣ ≤ 200 1 }
∴ ∣ Δ V V ∣ ≈ ∣ 2 Δ r r + Δ h h ∣ ≤ 2 ∣ Δ r r ∣ + ∣ Δ h h ∣ = 2 100 + 1 200 = 0.025 \therefore\left|\frac{\Delta V}{V}\right| \approx\left|2 \frac{\Delta r}{r}+\frac{\Delta h}{h}\right| \leq 2\left|\frac{\Delta r}{r}\right|+\left|\frac{\Delta h}{h}\right|=\frac{2}{100}+\frac{1}{200}=0.025 ∴ ∣ ∣ V Δ V ∣ ∣ ≈ ∣ ∣ 2 r Δ r + h Δ h ∣ ∣ ≤ 2 ∣ ∣ r Δ r ∣ ∣ + ∣ ∣ h Δ h ∣ ∣ = 100 2 + 200 1 = 0.025 Thus, the maximum percentage error (or change), viz. ∣ Δ V V ∣ × 100 \left|\frac{\Delta V}{V}\right| \times 100 ∣ ∣ V Δ V ∣ ∣ × 100 , due to possible percentage error (or change) in measurement of r r r and A A A will be about 2.5 2.5 2.5 per cent.
c. The period T T T of a simple pendulum is T = 2 π l g T=2 \pi \sqrt{\frac{l}{g}} T = 2 π g l , find the maximum percentage error in T T T due to possible errors up to 1 % 1 \% 1% in l l l and 2 % 2 \% 2% in g g g (Hint: d l l = 0.001 \frac{d l}{l}=0.001 l d l = 0.001 and d g g = 0.002 \frac{d g}{g}=0.002 g d g = 0.002 )
log T = log 2 π + 1 2 log l − 1 2 log g d T T = 0 + 1 2 l d l − 1 2 g d g = ( 1 2 ) ( d l l ) − ( 1 2 ) ( d g g ) = ( 1 2 ) ( 0.001 ) ± ( 1 2 ) ( 0.002 ) = 0.0005 ± 0.001 \begin{aligned} \log T & =\log 2\pi +\frac{1}{2}\log l-\frac{1}{2}\log g\\ \frac{dT}{T} & =0+\frac{1}{2l} dl-\frac{1}{2g} dg\\ & =\left(\frac{1}{2}\right)\left(\frac{dl}{l}\right) -\left(\frac{1}{2}\right)\left(\frac{dg}{g}\right)\\ & =\left(\frac{1}{2}\right)( 0.001) \pm \left(\frac{1}{2}\right)( 0.002)\\ & =0.0005\pm 0.001 \end{aligned} log T T d T = log 2 π + 2 1 log l − 2 1 log g = 0 + 2 l 1 d l − 2 g 1 d g = ( 2 1 ) ( l d l ) − ( 2 1 ) ( g d g ) = ( 2 1 ) ( 0.001 ) ± ( 2 1 ) ( 0.002 ) = 0.0005 ± 0.001 ∴ Max error = 1.5 % \therefore \text{Max error} =\ 1.5\% ∴ Max error = 1.5% d. The range R R R of a projectile which starts with a velocity v v v at an elevation α \alpha α is given by R = R= R = v 2 sin 2 α g \frac{v^{2} \sin 2 \alpha}{g} g v 2 s i n 2 α . Find the percentage error in R R R due to an error of 1 % 1 \% 1% in v \mathrm{v} v and an error of 0.5 % 0.5 \% 0.5% in α \alpha α .
Given R = v 2 sin 2 α g R=\frac{v^{2} \sin 2 \alpha}{g} R = g v 2 s i n 2 α or log R = 2 log v + log sin 2 α − log g \log R=2 \log v+\log \sin 2 \alpha-\log g log R = 2 log v + log sin 2 α − log g .
By error approximation (i.e. taking differential on both sides)
δ R R = 2 δ v v + 1 sin 2 α cos 2 α ⋅ 2 δ α , ( δ g = 0 ) \frac{\delta R}{R}=2 \frac{\delta v}{v}+\frac{1}{\sin 2 \alpha} \cos 2 \alpha \cdot 2 \delta \alpha,(\delta g=0) R δ R = 2 v δ v + sin 2 α 1 cos 2 α ⋅ 2 δ α , ( δ g = 0 ) or
( δ R R × 100 ) = 2 ( δ v v × 100 ) + 2 α ( cot 2 α ) ( δ α α × 100 ) = 2 × 1 + 2 α ⋅ cot 2 α × 0.5 = 2 + 2 α cot 2 α × 1 2 = ( 2 + α cot 2 α ) \begin{aligned} \left(\frac{\delta R}{R} \times 100\right) &=2\left(\frac{\delta v}{v} \times 100\right)+2 \alpha(\cot 2 \alpha)\left(\frac{\delta \alpha}{\alpha} \times 100\right) \\ &=2 \times 1+2 \alpha \cdot \cot 2 \alpha \times 0.5=2+2 \alpha \cot 2 \alpha \times \frac{1}{2} \\ &=(2+\alpha \cot 2 \alpha) \end{aligned} ( R δ R × 100 ) = 2 ( v δ v × 100 ) + 2 α ( cot 2 α ) ( α δ α × 100 ) = 2 × 1 + 2 α ⋅ cot 2 α × 0.5 = 2 + 2 α cot 2 α × 2 1 = ( 2 + α cot 2 α ) Hence, the percentage error in calculation of R R R due to errors of 1 % 1 \% 1% in R R R and 0.5 % 0.5 \% 0.5% in α \alpha α is ( 2 + α cot 2 α ) (2+\alpha \cot 2 \alpha) ( 2 + α cot 2 α ) .
Find the equations of the tangent plane and normal line to the following surfaces at the points indicated:
a. x 2 + 2 y 2 + 3 z 2 = 6 x^{2}+2 y^{2}+3 z^{2}=6 x 2 + 2 y 2 + 3 z 2 = 6 at ( 1 , 1 , 1 ) (1,1,1) ( 1 , 1 , 1 )
Partial derivation yields:
∂ f ∂ x = 2 x ∂ f ∂ y = 4 y ∂ f ∂ z = 6 z \frac{\partial f}{\partial x} =2x\quad \quad \frac{\partial f}{\partial y} =4y\quad \quad \frac{\partial f}{\partial z} =6z ∂ x ∂ f = 2 x ∂ y ∂ f = 4 y ∂ z ∂ f = 6 z
⟹ ∂ f ∂ x ( 1 , 1 , 1 ) = 2 ∂ f ∂ y ( 1 , 1 , 1 ) = 4 ∂ f ∂ z ( 1 , 1 , 1 ) = 6 \Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,1,1)} =2\quad \quad \frac{\partial f}{\partial y}_{( 1,1,1)} =4\quad \quad \frac{\partial f}{\partial z}_{( 1,1,1)} =6 ⟹ ∂ x ∂ f ( 1 , 1 , 1 ) = 2 ∂ y ∂ f ( 1 , 1 , 1 ) = 4 ∂ z ∂ f ( 1 , 1 , 1 ) = 6
Tangent plane:
( x − x o ) ( ∂ f ∂ x ) 0 + ( y − y 0 ) ( ∂ f ∂ y ) 0 + ( z − z 0 ) ( ∂ f ∂ z ) 0 = 0 2 ( x − 1 ) + 4 ( y − 1 ) + 6 ( z − 1 ) = 0 2 x − 2 + 4 y − 4 + 6 z − 6 = 0 x + 2 y + 3 z = 6 \begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x-1) +4( y-1) +6( z-1) & =0\\ 2x-2+4y-4+6z-6 & =0\\ x+2y+3z & =6 \end{aligned} ( x − x o ) ( ∂ x ∂ f ) 0 + ( y − y 0 ) ( ∂ y ∂ f ) 0 + ( z − z 0 ) ( ∂ z ∂ f ) 0 2 ( x − 1 ) + 4 ( y − 1 ) + 6 ( z − 1 ) 2 x − 2 + 4 y − 4 + 6 z − 6 x + 2 y + 3 z = 0 = 0 = 0 = 6 Normal line:
x − x 0 ( ∂ f ∂ x ) 0 = y − y 0 ( ∂ f ∂ y ) 0 = z − z 0 ( ∂ f ∂ z ) 0 x − 1 2 = y − 1 4 = z − 1 6 x − 1 1 = y − 1 2 = z − 1 3 \begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{2} & =\frac{y-1}{4} =\frac{z-1}{6}\\ \frac{x-1}{1} & =\frac{y-1}{2} =\frac{z-1}{3} \end{aligned} ( ∂ x ∂ f ) 0 x − x 0 2 x − 1 1 x − 1 = ( ∂ y ∂ f ) 0 y − y 0 = ( ∂ z ∂ f ) 0 z − z 0 = 4 y − 1 = 6 z − 1 = 2 y − 1 = 3 z − 1 b. 2 x 2 + y 2 − z 2 = − 3 2 x^{2}+y^{2}-z^{2}=-3 2 x 2 + y 2 − z 2 = − 3 at ( 1 , 2 , 3 ) (1,2,3) ( 1 , 2 , 3 )
Partial derivation yields:
∂ f ∂ x = 4 x ∂ f ∂ y = 2 y ∂ f ∂ z = − 2 z \frac{\partial f}{\partial x} =4x\quad \quad \frac{\partial f}{\partial y} =2y\quad \quad \frac{\partial f}{\partial z} =-2z ∂ x ∂ f = 4 x ∂ y ∂ f = 2 y ∂ z ∂ f = − 2 z
⟹ ∂ f ∂ x ( 1 , 2 , 3 ) = 4 ∂ f ∂ y ( 1 , 2 , 3 ) = 4 ∂ f ∂ z ( 1 , 2 , 3 ) = − 6 \Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,2,3)} =4\quad \quad \frac{\partial f}{\partial y}_{( 1,2,3)} =4\quad \quad \frac{\partial f}{\partial z}_{( 1,2,3)} =-6 ⟹ ∂ x ∂ f ( 1 , 2 , 3 ) = 4 ∂ y ∂ f ( 1 , 2 , 3 ) = 4 ∂ z ∂ f ( 1 , 2 , 3 ) = − 6
Tangent plane:
( x − x o ) ( ∂ f ∂ x ) 0 + ( y − y 0 ) ( ∂ f ∂ y ) 0 + ( z − z 0 ) ( ∂ f ∂ z ) 0 = 0 4 ( x − 1 ) + 4 ( y − 2 ) − 6 ( z − 3 ) = 0 4 x − 4 + 4 y − 8 − 6 z + 18 = 0 4 x + 4 y − 6 z = − 6 2 x + 2 y − 3 z = − 3 \begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 4( x-1) +4( y-2) -6( z-3) & =0\\ 4x-4+4y-8-6z+18 & =0\\ 4x+4y-6z & =-6\\ 2x+2y-3z & =-3 \end{aligned} ( x − x o ) ( ∂ x ∂ f ) 0 + ( y − y 0 ) ( ∂ y ∂ f ) 0 + ( z − z 0 ) ( ∂ z ∂ f ) 0 4 ( x − 1 ) + 4 ( y − 2 ) − 6 ( z − 3 ) 4 x − 4 + 4 y − 8 − 6 z + 18 4 x + 4 y − 6 z 2 x + 2 y − 3 z = 0 = 0 = 0 = − 6 = − 3 Normal line:
x − x 0 ( ∂ f ∂ x ) 0 = y − y 0 ( ∂ f ∂ y ) 0 = z − z 0 ( ∂ f ∂ z ) 0 x − 1 4 = y − 2 4 = z − 3 − 6 x − 1 2 = y − 2 2 = z − 3 − 3 \begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{4} & =\frac{y-2}{4} =\frac{z-3}{-6}\\ \frac{x-1}{2} & =\frac{y-2}{2} =\frac{z-3}{-3} \end{aligned} ( ∂ x ∂ f ) 0 x − x 0 4 x − 1 2 x − 1 = ( ∂ y ∂ f ) 0 y − y 0 = ( ∂ z ∂ f ) 0 z − z 0 = 4 y − 2 = − 6 z − 3 = 2 y − 2 = − 3 z − 3 c. x 2 + y 2 − z = 1 x^{2}+y^{2}-z=1 x 2 + y 2 − z = 1 at ( 1 , 2 , 4 ) (1,2,4) ( 1 , 2 , 4 )
Partial derivation yields:
∂ f ∂ x = 2 x ∂ f ∂ y = 2 y ∂ f ∂ z = − 1 \frac{\partial f}{\partial x} =2x\quad \quad \frac{\partial f}{\partial y} =2y\quad \quad \frac{\partial f}{\partial z} =-1 ∂ x ∂ f = 2 x ∂ y ∂ f = 2 y ∂ z ∂ f = − 1
⟹ ∂ f ∂ x ( 1 , 2 , 4 ) = 2 ∂ f ∂ y ( 1 , 2 , 4 ) = 4 ∂ f ∂ z ( 1 , 2 , 4 ) = − 1 \Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,2,4)} =2\quad \quad \frac{\partial f}{\partial y}_{( 1,2,4)} =4\quad \quad \frac{\partial f}{\partial z}_{( 1,2,4)} =-1 ⟹ ∂ x ∂ f ( 1 , 2 , 4 ) = 2 ∂ y ∂ f ( 1 , 2 , 4 ) = 4 ∂ z ∂ f ( 1 , 2 , 4 ) = − 1
Tangent plane:
( x − x o ) ( ∂ f ∂ x ) 0 + ( y − y 0 ) ( ∂ f ∂ y ) 0 + ( z − z 0 ) ( ∂ f ∂ z ) 0 = 0 2 ( x − 1 ) + 4 ( y − 2 ) − 1 ( z − 4 ) = 0 2 x − 2 + 4 y − 8 − z + 4 = 0 2 x + 4 y − z = 6 \begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x-1) +4( y-2) -1( z-4) & =0\\ 2x-2+4y-8-z+4 & =0\\ 2x+4y-z & =6 \end{aligned} ( x − x o ) ( ∂ x ∂ f ) 0 + ( y − y 0 ) ( ∂ y ∂ f ) 0 + ( z − z 0 ) ( ∂ z ∂ f ) 0 2 ( x − 1 ) + 4 ( y − 2 ) − 1 ( z − 4 ) 2 x − 2 + 4 y − 8 − z + 4 2 x + 4 y − z = 0 = 0 = 0 = 6 Normal line:
x − x 0 ( ∂ f ∂ x ) 0 = y − y 0 ( ∂ f ∂ y ) 0 = z − z 0 ( ∂ f ∂ z ) 0 x − 1 2 = y − 2 4 = z − 4 − 1 \begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{2} & =\frac{y-2}{4} =\frac{z-4}{-1} \end{aligned} ( ∂ x ∂ f ) 0 x − x 0 2 x − 1 = ( ∂ y ∂ f ) 0 y − y 0 = ( ∂ z ∂ f ) 0 z − z 0 = 4 y − 2 = − 1 z − 4 d. ln ( x y ) − z 2 ( x − 2 y ) − 3 z = 3 \displaystyle \ln \left(\frac{x}{y}\right)-z^{2}(x-2 y)-3 z=3 ln ( y x ) − z 2 ( x − 2 y ) − 3 z = 3 at ( 4 , 2 , − 1 ) (4,2,-1) ( 4 , 2 , − 1 )
Partial derivation yields:
∂ f ∂ x = 1 x − z 2 ∂ f ∂ y = 2 z 2 − 1 y ∂ f ∂ z = − 2 z ( x − 2 y ) − 3 \frac{\partial f}{\partial x} =\frac{1}{x} -z^{2} \quad \quad \frac{\partial f}{\partial y} =2z^{2} -\frac{1}{y} \quad \quad \frac{\partial f}{\partial z} =-2z( x-2y) -3 ∂ x ∂ f = x 1 − z 2 ∂ y ∂ f = 2 z 2 − y 1 ∂ z ∂ f = − 2 z ( x − 2 y ) − 3
⟹ ∂ f ∂ x ( 4 , 2 , − 1 ) = − 3 4 ∂ f ∂ y ( 4 , 2 , − 1 ) = 3 2 ∂ f ∂ z ( 4 , 2 , − 1 ) = − 3 \Longrightarrow \ \frac{\partial f}{\partial x}_{( 4,2,-1)} =-\frac{3}{4} \quad \quad \frac{\partial f}{\partial y}_{( 4,2,-1)} =\frac{3}{2} \quad \quad \frac{\partial f}{\partial z}_{( 4,2,-1)} =-3 ⟹ ∂ x ∂ f ( 4 , 2 , − 1 ) = − 4 3 ∂ y ∂ f ( 4 , 2 , − 1 ) = 2 3 ∂ z ∂ f ( 4 , 2 , − 1 ) = − 3
Tangent plane:
( x − x o ) ( ∂ f ∂ x ) 0 + ( y − y 0 ) ( ∂ f ∂ y ) 0 + ( z − z 0 ) ( ∂ f ∂ z ) 0 = 0 − 3 4 ( x − 4 ) + 3 2 ( y − 2 ) − 3 ( z + 1 ) = 0 − 3 4 x + 3 + 3 2 y − 3 − 3 z − 3 = 0 − 3 4 x + 3 2 y − 3 z = 3 \begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ -\frac{3}{4}( x-4) +\frac{3}{2}( y-2) -3( z+1) & =0\\ -\frac{3}{4} x+3+\frac{3}{2} y-3-3z-3 & =0\\ -\frac{3}{4} x+\frac{3}{2} y-3z & =3 \end{aligned} ( x − x o ) ( ∂ x ∂ f ) 0 + ( y − y 0 ) ( ∂ y ∂ f ) 0 + ( z − z 0 ) ( ∂ z ∂ f ) 0 − 4 3 ( x − 4 ) + 2 3 ( y − 2 ) − 3 ( z + 1 ) − 4 3 x + 3 + 2 3 y − 3 − 3 z − 3 − 4 3 x + 2 3 y − 3 z = 0 = 0 = 0 = 3 Normal line:
x − x 0 ( ∂ f ∂ x ) 0 = y − y 0 ( ∂ f ∂ y ) 0 = z − z 0 ( ∂ f ∂ z ) 0 x − 4 − 3 4 = y − 2 3 2 = z + 1 − 3 \begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-4}{-\frac{3}{4}} & =\frac{y-2}{\frac{3}{2}} =\frac{z+1}{-3} \end{aligned} ( ∂ x ∂ f ) 0 x − x 0 − 4 3 x − 4 = ( ∂ y ∂ f ) 0 y − y 0 = ( ∂ z ∂ f ) 0 z − z 0 = 2 3 y − 2 = − 3 z + 1 e. x 3 z + z 3 x − 2 y z = 0 x^{3} z+z^{3} x-2 y z=0 x 3 z + z 3 x − 2 yz = 0 at ( 1 , 1 , 1 ) (1,1,1) ( 1 , 1 , 1 )
Partial derivation yields:
∂ f ∂ x = 3 x 2 z + z 3 ∂ f ∂ y = − 2 z ∂ f ∂ z = x 3 + 3 z 2 x − 2 y \frac{\partial f}{\partial x} =3x^{2} z+z^{3} \quad \quad \frac{\partial f}{\partial y} =-2z\quad \quad \frac{\partial f}{\partial z} =x^{3} +3z^{2} x-2y ∂ x ∂ f = 3 x 2 z + z 3 ∂ y ∂ f = − 2 z ∂ z ∂ f = x 3 + 3 z 2 x − 2 y
⟹ ∂ f ∂ x ( 1 , 1 , 1 ) = 4 ∂ f ∂ y ( 1 , 1 , 1 ) = − 2 ∂ f ∂ z ( 1 , 1 , 1 ) = 2 \Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,1,1)} =4\quad \quad \frac{\partial f}{\partial y}_{( 1,1,1)} =-2\quad \quad \frac{\partial f}{\partial z}_{( 1,1,1)} =2 ⟹ ∂ x ∂ f ( 1 , 1 , 1 ) = 4 ∂ y ∂ f ( 1 , 1 , 1 ) = − 2 ∂ z ∂ f ( 1 , 1 , 1 ) = 2
Tangent plane:
( x − x o ) ( ∂ f ∂ x ) 0 + ( y − y 0 ) ( ∂ f ∂ y ) 0 + ( z − z 0 ) ( ∂ f ∂ z ) 0 = 0 4 ( x − 1 ) − 2 ( y − 1 ) + 2 ( z − 1 ) = 0 4 x − 4 − 2 y + 2 + 2 z − 2 = 0 4 x − 2 y + 2 z = 4 2 x − y + z = 2 \begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 4( x-1) -2( y-1) +2( z-1) & =0\\ 4x-4-2y+2+2z-2 & =0\\ 4x-2y+2z & =4\\ 2x-y+z & =2 \end{aligned} ( x − x o ) ( ∂ x ∂ f ) 0 + ( y − y 0 ) ( ∂ y ∂ f ) 0 + ( z − z 0 ) ( ∂ z ∂ f ) 0 4 ( x − 1 ) − 2 ( y − 1 ) + 2 ( z − 1 ) 4 x − 4 − 2 y + 2 + 2 z − 2 4 x − 2 y + 2 z 2 x − y + z = 0 = 0 = 0 = 4 = 2 Normal line:
x − x 0 ( ∂ f ∂ x ) 0 = y − y 0 ( ∂ f ∂ y ) 0 = z − z 0 ( ∂ f ∂ z ) 0 x − 1 4 = y − 1 − 2 = z − 1 2 x − 1 2 = y − 1 − 1 = z − 1 1 \begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{4} & =\frac{y-1}{-2} =\frac{z-1}{2}\\ \frac{x-1}{2} & =\frac{y-1}{-1} =\frac{z-1}{1} \end{aligned} ( ∂ x ∂ f ) 0 x − x 0 4 x − 1 2 x − 1 = ( ∂ y ∂ f ) 0 y − y 0 = ( ∂ z ∂ f ) 0 z − z 0 = − 2 y − 1 = 2 z − 1 = − 1 y − 1 = 1 z − 1 f. z = 5 + ( x − 1 ) 2 + ( y + 2 ) 2 z=5+(x-1)^{2}+(y+2)^{2} z = 5 + ( x − 1 ) 2 + ( y + 2 ) 2 at ( 2 , 0 , 10 ) (2,0,10) ( 2 , 0 , 10 )
z = 5 + ( x − 1 ) 2 + ( y + 2 ) 2 ⟹ ( x − 1 ) 2 + ( y + 2 ) 2 − z = 5 z=5+( x-1)^{2} +( y+2)^{2} \Longrightarrow ( x-1)^{2} +( y+2)^{2} -z=5 z = 5 + ( x − 1 ) 2 + ( y + 2 ) 2 ⟹ ( x − 1 ) 2 + ( y + 2 ) 2 − z = 5
Partial derivation yields:
∂ f ∂ x = 2 ( x − 1 ) ∂ f ∂ y = 2 ( y + 2 ) ∂ f ∂ z = − 1 \frac{\partial f}{\partial x} =2( x-1) \quad \quad \frac{\partial f}{\partial y} =2( y+2) \quad \quad \frac{\partial f}{\partial z} =-1 ∂ x ∂ f = 2 ( x − 1 ) ∂ y ∂ f = 2 ( y + 2 ) ∂ z ∂ f = − 1
⟹ ∂ f ∂ x ( 2 , 0 , 10 ) = 2 ∂ f ∂ y ( 2 , 0 , 10 ) = 4 ∂ f ∂ z ( 2 , 0 , 10 ) = − 1 \Longrightarrow \ \frac{\partial f}{\partial x}_{( 2,0,10)} =2\quad \quad \frac{\partial f}{\partial y}_{( 2,0,10)} =4\quad \quad \frac{\partial f}{\partial z}_{( 2,0,10)} =-1 ⟹ ∂ x ∂ f ( 2 , 0 , 10 ) = 2 ∂ y ∂ f ( 2 , 0 , 10 ) = 4 ∂ z ∂ f ( 2 , 0 , 10 ) = − 1
Tangent plane:
( x − x o ) ( ∂ f ∂ x ) 0 + ( y − y 0 ) ( ∂ f ∂ y ) 0 + ( z − z 0 ) ( ∂ f ∂ z ) 0 = 0 2 ( x − 2 ) + 4 ( y ) − ( z − 10 ) = 0 2 x − 4 + 4 y − z + 10 = 0 2 x + 4 y − z = − 6 \begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x-2) +4( y) -( z-10) & =0\\ 2x-4+4y-z+10 & =0\\ 2x+4y-z & =-6 \end{aligned} ( x − x o ) ( ∂ x ∂ f ) 0 + ( y − y 0 ) ( ∂ y ∂ f ) 0 + ( z − z 0 ) ( ∂ z ∂ f ) 0 2 ( x − 2 ) + 4 ( y ) − ( z − 10 ) 2 x − 4 + 4 y − z + 10 2 x + 4 y − z = 0 = 0 = 0 = − 6 Normal line:
x − x 0 ( ∂ f ∂ x ) 0 = y − y 0 ( ∂ f ∂ y ) 0 = z − z 0 ( ∂ f ∂ z ) 0 x − 2 2 = y 4 = z − 10 − 1 \begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-2}{2} & =\frac{y}{4} =\frac{z-10}{-1} \end{aligned} ( ∂ x ∂ f ) 0 x − x 0 2 x − 2 = ( ∂ y ∂ f ) 0 y − y 0 = ( ∂ z ∂ f ) 0 z − z 0 = 4 y = − 1 z − 10 g. x 2 12 + y 2 6 + z 2 4 = 1 \displaystyle\frac{x^{2}}{12}+\frac{y^{2}}{6}+\frac{z^{2}}{4}=1 12 x 2 + 6 y 2 + 4 z 2 = 1 at ( 1 , 2 , 1 ) (1,2,1) ( 1 , 2 , 1 )
Partial derivation yields:
∂ f ∂ x = x 6 ∂ f ∂ y = y 3 ∂ f ∂ z = z 2 \frac{\partial f}{\partial x} =\frac{x}{6} \quad \quad \frac{\partial f}{\partial y} =\frac{y}{3} \quad \quad \frac{\partial f}{\partial z} =\frac{z}{2} ∂ x ∂ f = 6 x ∂ y ∂ f = 3 y ∂ z ∂ f = 2 z
⟹ ∂ f ∂ x ( 1 , 2 , 1 ) = 1 6 ∂ f ∂ y ( 1 , 2 , 1 ) = 2 3 ∂ f ∂ z ( 1 , 2 , 1 ) = 1 2 \Longrightarrow \ \frac{\partial f}{\partial x}_{( 1,2,1)} =\frac{1}{6} \quad \quad \frac{\partial f}{\partial y}_{( 1,2,1)} =\frac{2}{3} \quad \quad \frac{\partial f}{\partial z}_{( 1,2,1)} =\frac{1}{2} ⟹ ∂ x ∂ f ( 1 , 2 , 1 ) = 6 1 ∂ y ∂ f ( 1 , 2 , 1 ) = 3 2 ∂ z ∂ f ( 1 , 2 , 1 ) = 2 1
Tangent plane:
( x − x o ) ( ∂ f ∂ x ) 0 + ( y − y 0 ) ( ∂ f ∂ y ) 0 + ( z − z 0 ) ( ∂ f ∂ z ) 0 = 0 1 6 ( x − 1 ) + 2 3 ( y − 2 ) + 1 2 ( z − 1 ) = 0 1 6 x − 1 6 + 2 3 y − 4 3 + 1 2 z − 1 2 = 0 1 6 x + 4 6 y + 3 6 z − 1 6 − 8 6 − 3 6 = 0 1 6 x + 4 6 y + 3 6 z − 2 = 0 x + 4 y + 3 z = 12 \begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ \frac{1}{6}( x-1) +\frac{2}{3}( y-2) +\frac{1}{2}( z-1) & =0\\ \frac{1}{6} x-\frac{1}{6} +\frac{2}{3} y-\frac{4}{3} +\frac{1}{2} z-\frac{1}{2} & =0\\ \frac{1}{6} x+\frac{4}{6} y+\frac{3}{6} z-\frac{1}{6} -\frac{8}{6} -\frac{3}{6} & =0\\ \frac{1}{6} x+\frac{4}{6} y+\frac{3}{6} z-2 & =0\\ x+4y+3z & =12 \end{aligned} ( x − x o ) ( ∂ x ∂ f ) 0 + ( y − y 0 ) ( ∂ y ∂ f ) 0 + ( z − z 0 ) ( ∂ z ∂ f ) 0 6 1 ( x − 1 ) + 3 2 ( y − 2 ) + 2 1 ( z − 1 ) 6 1 x − 6 1 + 3 2 y − 3 4 + 2 1 z − 2 1 6 1 x + 6 4 y + 6 3 z − 6 1 − 6 8 − 6 3 6 1 x + 6 4 y + 6 3 z − 2 x + 4 y + 3 z = 0 = 0 = 0 = 0 = 0 = 12 Normal line:
x − x 0 ( ∂ f ∂ x ) 0 = y − y 0 ( ∂ f ∂ y ) 0 = z − z 0 ( ∂ f ∂ z ) 0 x − 1 1 6 = y − 2 2 3 = z − 1 1 2 x − 1 1 6 = y − 2 4 6 = z − 1 3 6 x − 1 1 = y − 2 4 = z − 1 3 \begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x-1}{\frac{1}{6}} & =\frac{y-2}{\frac{2}{3}} =\frac{z-1}{\frac{1}{2}}\\ \frac{x-1}{\frac{1}{6}} & =\frac{y-2}{\frac{4}{6}} =\frac{z-1}{\frac{3}{6}}\\ \frac{x-1}{1} & =\frac{y-2}{4} =\frac{z-1}{3} \end{aligned} ( ∂ x ∂ f ) 0 x − x 0 6 1 x − 1 6 1 x − 1 1 x − 1 = ( ∂ y ∂ f ) 0 y − y 0 = ( ∂ z ∂ f ) 0 z − z 0 = 3 2 y − 2 = 2 1 z − 1 = 6 4 y − 2 = 6 3 z − 1 = 4 y − 2 = 3 z − 1 h. z e x + e z + 1 + x y + y = 3 z e^{x}+e^{z+1}+x y+y=3 z e x + e z + 1 + x y + y = 3 at ( 0 , 3 − 1 ) (0,3-1) ( 0 , 3 − 1 )
Partial derivation yields:
∂ f ∂ x = z e x + y ∂ f ∂ y = x + 1 ∂ f ∂ z = e x + e z + 1 \frac{\partial f}{\partial x} =ze^{x} +y\quad \quad \frac{\partial f}{\partial y} =x+1\quad \quad \frac{\partial f}{\partial z} =e^{x} +e^{z+1} ∂ x ∂ f = z e x + y ∂ y ∂ f = x + 1 ∂ z ∂ f = e x + e z + 1
⟹ ∂ f ∂ x ( 0 , 3 , − 1 ) = 2 ∂ f ∂ y ( 0 , 3 , − 1 ) = 1 ∂ f ∂ z ( 0 , 3 , − 1 ) = 2 \Longrightarrow \ \frac{\partial f}{\partial x}_{( 0,3,-1)} =2\quad \quad \frac{\partial f}{\partial y}_{( 0,3,-1)} =1\quad \quad \frac{\partial f}{\partial z}_{( 0,3,-1)} =2 ⟹ ∂ x ∂ f ( 0 , 3 , − 1 ) = 2 ∂ y ∂ f ( 0 , 3 , − 1 ) = 1 ∂ z ∂ f ( 0 , 3 , − 1 ) = 2
Tangent plane:
( x − x o ) ( ∂ f ∂ x ) 0 + ( y − y 0 ) ( ∂ f ∂ y ) 0 + ( z − z 0 ) ( ∂ f ∂ z ) 0 = 0 2 ( x ) + ( y − 3 ) + 2 ( z + 1 ) = 0 2 x + y − 3 + 2 z + 2 = 0 2 x + y + 2 z = 1 \begin{aligned} ( x-x_{o})\left(\frac{\partial f}{\partial x}\right)_{0} +( y-y_{0})\left(\frac{\partial f}{\partial y}\right)_{0} +( z-z_{0})\left(\frac{\partial f}{\partial z}\right)_{0} & =0\\ 2( x) +( y-3) +2( z+1) & =0\\ 2x+y-3+2z+2 & =0\\ 2x+y+2z & =1 \end{aligned} ( x − x o ) ( ∂ x ∂ f ) 0 + ( y − y 0 ) ( ∂ y ∂ f ) 0 + ( z − z 0 ) ( ∂ z ∂ f ) 0 2 ( x ) + ( y − 3 ) + 2 ( z + 1 ) 2 x + y − 3 + 2 z + 2 2 x + y + 2 z = 0 = 0 = 0 = 1 Normal line:
x − x 0 ( ∂ f ∂ x ) 0 = y − y 0 ( ∂ f ∂ y ) 0 = z − z 0 ( ∂ f ∂ z ) 0 x 2 = y − 3 1 = z + 1 2 \begin{aligned} \frac{x-x_{0}}{\left(\frac{\partial f}{\partial x}\right)_{0}} & =\frac{y-y_{0}}{\left(\frac{\partial f}{\partial y}\right)_{0}} =\frac{z-z_{0}}{\left(\frac{\partial f}{\partial z}\right)_{0}}\\ \frac{x}{2} & =\frac{y-3}{1} =\frac{z+1}{2} \end{aligned} ( ∂ x ∂ f ) 0 x − x 0 2 x = ( ∂ y ∂ f ) 0 y − y 0 = ( ∂ z ∂ f ) 0 z − z 0 = 1 y − 3 = 2 z + 1