Skip to main content

Tutorial 11

Tutorial 11: Multiple Integrals in Polar Coordinate & Its Engineering Application

  1. In the following exercises, change the cartesian integral into an equivalent polar coordinate integral. Then solve the integral in polar coordinate:

    a. 1101x2dydx\displaystyle\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x

    Solution
    1101x2dydx=111x2dx\begin{aligned} \int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x &=\int_{-1}^{1} \sqrt{1-x^{2}} dx\\ \end{aligned}

    Let x=sin(θ)x=\sin(\theta), θ[π2,π2]\theta\in[-\frac{\pi}{2},\frac{\pi}{2}]. Therefore, dx=cos(θ)dθdx=\cos(\theta)d\theta.

    1101x2dydx=111x2dx=111sin2(θ)cos(θ)dθ=11cos2(θ)cos(θ)dθ=11cos(θ)cos(θ)dθ=11cos2(θ)=1112+12cos(2θ)dθ=12θ+14sin(2θ)11=12sin1(x)+12x1x211=π2\begin{aligned} \int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x &=\int_{-1}^{1} \sqrt{1-x^{2}} dx\\ &=\int_{-1}^1 \sqrt{1-\sin^2(\theta)} \cos(\theta)d\theta \\ &=\int_{-1}^1 \sqrt{\cos^2(\theta)} \cos(\theta)d\theta \\ &=\int_{-1}^1 |\cos(\theta)|\cos(\theta)d\theta=\int_{-1}^1 \cos^2(\theta)\\ &=\int_{-1}^1 \frac{1}{2}+\frac{1}{2}\cos(2\theta)d\theta\\ &=\left.\frac{1}{2}\theta+\frac{1}{4}\sin(2\theta)\right|_{-1}^1\\ &=\left.\frac{1}{2}\sin^{-1}(x)+\frac{1}{2}x\sqrt{1-x^2}\right|_{-1}^1\\ &=\frac{\pi}{2} \end{aligned}

    b. 020xydydx\displaystyle\int_{0}^{2} \int_{0}^{x} y d y d x

    Solution
    020xydydx=02x22dx=x3602=43\begin{aligned} \int_0^2\int_0^xydydx&=\int_0^2\frac{x^2}{2}dx\\ &=\left.\frac{x^3}{6}\right|_0^2=\frac{4}{3} \end{aligned}

    c. 111x21x22(1+x2+y2)2dydx\displaystyle\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x

    Solution
    I=111x21x22(1+x2+y2)2dydx(region: unit disk x2+y21)=02π012(1+r2)2,r,dr,dθ(polar coordinates x=rcosθ,;y=rsinθ)=02π(012r(1+r2)2,dr)dθ\begin{aligned} I &= \int_{-1}^{1}\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\frac{2}{(1+x^{2}+y^{2})^{2}} dy dx \quad\text{(region: unit disk }x^{2}+y^{2}\le 1\text{)} \\ &= \int_{0}^{2\pi}\int_{0}^{1}\frac{2}{(1+r^{2})^{2}},r,dr,d\theta \qquad\text{(polar coordinates }x=r\cos\theta,;y=r\sin\theta\text{)} \\ &= \int_{0}^{2\pi}\left(\int_{0}^{1}\frac{2r}{(1+r^{2})^{2}},dr\right)d\theta \end{aligned}

    Use the substitution u=1+r2u=1+r^{2}, so du=2r,drdu=2r,dr.

    When r=0u=1r=0 \Rightarrow u=1, and when r=1u=2r=1 \Rightarrow u=2. Thus,

    012r(1+r2)2dr=121u2du=[1u]12=12+1=12.\begin{aligned} \int_{0}^{1}\frac{2r}{(1+r^{2})^{2}}dr &=\int_{1}^{2}\frac{1}{u^{2}}du \\ &=\left[-\frac{1}{u}\right]_{1}^{2} \\ &=-\frac{1}{2}+1=\frac{1}{2}. \end{aligned}

    Therefore,

    I=02π12dθ=122π=πI=\int_{0}^{2\pi}\frac{1}{2}d\theta=\frac{1}{2}\cdot 2\pi=\pi

    d. 0ln20(ln2)2y2ex2+y2dxdy\displaystyle\int_{0}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^{2}-y^{2}}} e \sqrt{x^{2}+y^{2}} d x d y

    Solution
    0ln20(ln2)2y2ex2+y2dxdy\int_{0}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^{2}-y^{2}}} e^{\sqrt{x^{2}+y^{2}}} \,dx\,dy

    The limits of integration are given by 0yln20 \le y \le \ln 2 and 0x(ln2)2y20 \le x \le \sqrt{(\ln 2)^{2}-y^{2}}. The upper limit for xx can be rewritten as x2(ln2)2y2x^2 \le (\ln 2)^2 - y^2, which simplifies to x2+y2(ln2)2x^2 + y^2 \le (\ln 2)^2. This inequality describes the area inside and on a circle centered at the origin with a radius of R=ln2R = \ln 2.

    Given that x0x \ge 0 and y0y \ge 0, the region of integration is the portion of this circle in the first quadrant.

    The circular nature of the domain and the form of the integrand (x2+y2x^2+y^2) make it ideal to convert to polar coordinates. The conversion formulas are:

    x=rcosθy=rsinθx2+y2=r2dxdy=rdrdθ\begin{align*} x &= r \cos \theta \\ y &= r \sin \theta \\ x^2 + y^2 &= r^2 \\ dx\,dy &= r\,dr\,d\theta \end{align*}

    The limits for the region in polar coordinates become:

    • Radius: 0rln20 \le r \le \ln 2
    • Angle: 0θπ20 \le \theta \le \frac{\pi}{2}

    The integrand ex2+y2e^{\sqrt{x^2+y^2}} becomes er2=ere^{\sqrt{r^2}} = e^r.

    Thus, the integral in polar coordinates is:

    0π20ln2errdrdθ\int_{0}^{\frac{\pi}{2}} \int_{0}^{\ln 2} e^r \cdot r \,dr\,d\theta

    Next, we evaluate the integral with respect to rr using integration by parts, where udv=uvvdu\int u \,dv = uv - \int v \,du.

    Let u=ru = r and dv=erdrdv = e^r \,dr. Then du=drdu = dr and v=erv = e^r.

    0ln2rerdr=[rererdr]0ln2=[rerer]0ln2=[(r1)er]0ln2=((ln21)eln2)((01)e0)=((ln21)2)(11)=2ln22+1=2ln21=ln(4)1\begin{align*} \int_{0}^{\ln 2} r e^r \,dr &= \left[r e^r - \int e^r \,dr\right]_{0}^{\ln 2} \\ &= \left[r e^r - e^r\right]_{0}^{\ln 2} \\ &= \left[(r-1)e^r\right]_{0}^{\ln 2} \\ &= ((\ln 2 - 1)e^{\ln 2}) - ((0-1)e^0) \\ &= ((\ln 2 - 1) \cdot 2) - (-1 \cdot 1) \\ &= 2\ln 2 - 2 + 1 \\ &= 2\ln 2 - 1 = \ln(4) - 1 \end{align*}

    Finally, we substitute the result from the inner integral into the outer integral and evaluate with respect to θ\theta:

    0π2(ln41)dθ=(ln41)0π2dθ=(ln41)[θ]0π2=(ln41)(π20)=π2(ln41)\begin{align*} \int_{0}^{\frac{\pi}{2}} (\ln 4 - 1) \,d\theta &= (\ln 4 - 1) \int_{0}^{\frac{\pi}{2}} d\theta \\ &= (\ln 4 - 1) \left[\theta\right]_{0}^{\frac{\pi}{2}} \\ &= (\ln 4 - 1) \left(\frac{\pi}{2} - 0\right) \\ &= \frac{\pi}{2}(\ln 4 - 1) \end{align*}
  2. Evaluate the 1x2y2dA\displaystyle\iint 1-x^{2}-y^{2} d A using polar coordinates

    Solution

    The region RR is a unit circle, so we can describe it as R={(r,θ)0r1,0θ2π}R=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\}.

    Using the conversion x=rcosθ,y=rsinθx=r \cos \theta, y=r \sin \theta, and dA=rdrdθd A=r d r d \theta, we have

    R(1x2y2)dA=02π01(1r2)rdrdθ=02π01(rr3)drdθ=02π[r22r44]01dθ=02π14dθ=π2\begin{equation*} \begin{aligned} \iint_R\left(1-x^2-y^2\right) d A & =\int_0^{2 \pi} \int_0^1\left(1-r^2\right) r d r d \theta \\ & =\int_0^{2 \pi} \int_0^1\left(r-r^3\right) d r d \theta \\ & =\int_0^{2 \pi}\left[\frac{r^2}{2}-\frac{r^4}{4}\right]_0^1 d \theta \\ & =\int_0^{2 \pi} \frac{1}{4} d \theta=\frac{\pi}{2} \end{aligned} \end{equation*}
  3. Find the volume below z=y2x2+y2\displaystyle z=\frac{y^{2}}{x^{2}+y^{2}}, above xyx y-plane and between cylinder x2+y2=1x^{2}+y^{2}=1 and x2+y2=2x^{2}+y^{2}=2

    Solution
    Figure for Answer 3
    θ=02πr=12zrdrdθ=θ=02πr=12y2x2+y2rdrdθ=θ=02πr=12y2r2rdrdθ=θ=02πr=12r2sin2θr2rdrdθ=θ=02πr=12sin2θrdrdθ=θ=02π(r22sin2θ)r=1r=2dθ=θ=02πsin2θ2dθ=12θ=02π12(1cos2θ)dθ=14θ=02π(1cos2θ)dθ=14(θsin2θ2)θ=0θ=2π=14(2π)=π2\begin{equation*} \begin{aligned} \int_{\theta=0}^{2\pi} \int_{r=1}^{\sqrt{2}} z\, r\,dr\,d\theta &= \int_{\theta=0}^{2\pi} \int_{r=1}^{\sqrt{2}}\frac{y^{2}}{x^{2}+y^{2}}r\,dr\,d\theta \\ &= \int_{\theta=0}^{2\pi} \int_{r=1}^{\sqrt{2}}\frac{y^{2}}{r^{2}}r\,dr\,d\theta \\ &= \int_{\theta=0}^{2\pi} \int_{r=1}^{\sqrt{2}}\frac{r^{2}\sin^{2}\theta}{r^{2}} r\,dr\,d\theta \\ &= \int_{\theta=0}^{2\pi} \int_{r=1}^{\sqrt{2}} \sin^{2}\theta \, r\,dr\,d\theta \\ &= \int_{\theta=0}^{2\pi} \left. \left( \frac{r^{2}}{2} \sin^{2}\theta \right) \right\vert_{r=1}^{r=\sqrt{2}} d\theta \\ &= \int_{\theta=0}^{2\pi} \frac{\sin^{2}\theta}{2} \, d\theta \\ &= \frac{1}{2} \int_{\theta=0}^{2\pi} \frac{1}{2}\left(1 - \cos 2\theta\right)\, d\theta \\ &= \frac{1}{4} \int_{\theta=0}^{2\pi} (1 - \cos 2\theta)\, d\theta \\ &= \frac{1}{4} \left( \theta - \frac{\sin 2\theta}{2} \right) \Big|_{\theta=0}^{\theta=2\pi} \\ &= \frac{1}{4}(2\pi) = \frac{\pi}{2} \end{aligned} \end{equation*}
  4. Find the volume between the sphere x2+y2+z2=1x^{2}+y^{2}+z^{2}=1 and the cone z=x2+y2z=\sqrt{x^{2}+y^{2}}

    Solution

    We seek the volume inside the sphere x2+y2+z2=1x^{2}+y^{2}+z^{2}=1 and above the cone z=x2+y2z=\sqrt{x^{2}+y^{2}}.

    In spherical coordinates (ρ,ϕ,θ)( \rho,\phi,\theta ), x=ρsinϕcosθ,  y=ρsinϕsinθ,  z=ρcosϕx=\rho\sin\phi\cos\theta,\; y=\rho\sin\phi\sin\theta,\; z=\rho\cos\phi, the volume element is

    dV=ρ2sinϕdρdϕdθdV=\rho^{2}\sin\phi\,d\rho\,d\phi\,d\theta.

    The cone z=x2+y2z=\sqrt{x^{2}+y^{2}} becomes ρcosϕ=ρsinϕcosϕ=sinϕϕ=π4\rho\cos\phi=\rho\sin\phi\quad\Rightarrow\quad \cos\phi=\sin\phi \quad\Rightarrow\quad \phi=\frac{\pi}{4}.

    Thus, the region is 0θ2π,0ϕπ4,0ρ10\le\theta\le2\pi,\quad 0\le\phi\le\frac{\pi}{4},\quad 0\le\rho\le1.

    V=02π0π/401ρ2sinϕ  dρdϕdθ=(02πdθ)(0π/4sinϕdϕ)(01ρ2dρ)=(2π)[cosϕ]0π/4[ρ33]01=2π(122)13=2π3 ⁣(122)=2π3π23=π3(22)\begin{equation*} \begin{aligned} V &= \int_{0}^{2\pi}\int_{0}^{\pi/4}\int_{0}^{1} \rho^{2}\sin\phi \; d\rho\,d\phi\,d\theta\\ &= \left(\int_{0}^{2\pi} d\theta\right) \left(\int_{0}^{\pi/4}\sin\phi\,d\phi\right) \left(\int_{0}^{1}\rho^{2}\,d\rho\right)\\ &= (2\pi)\left[-\cos\phi\right]_{0}^{\pi/4}\left[\frac{\rho^{3}}{3}\right]_{0}^{1}\\ &= 2\pi\left(1-\frac{\sqrt{2}}{2}\right)\cdot\frac{1}{3}\\ &= \frac{2\pi}{3}\!\left(1-\frac{\sqrt{2}}{2}\right) = \frac{2\pi}{3}-\frac{\pi\sqrt{2}}{3} = \frac{\pi}{3}\,(2-\sqrt{2}) \end{aligned} \end{equation*}
  5. Volume is equal to area only if the height (zz) is equal to 1 . Find the area of RR where RR is the region bound by r=3cosθr=3 \cos \theta.

    Solution
    Figure for Answer 5

    Region bound by r=3cosθr=3\cos\theta


    How to sketch the region RR?

    rr=3cosθrr2=3rcosθx2+y2=3rcosθx2+y2=3xx23x+y2=0(x32)2+y2=(32)2=94\begin{equation*} \begin{aligned} r \cdot r &= 3\cos\theta \cdot r \\ r^{2} &= 3r\cos\theta \\ x^{2} + y^{2} &= 3r\cos\theta \\ x^{2} + y^{2} &= 3x \\ x^{2} - 3x + y^{2} &= 0 \\ \left(x - \tfrac{3}{2}\right)^{2} + y^{2} &= \left(\tfrac{3}{2}\right)^{2} = \tfrac{9}{4} \\ \end{aligned} \end{equation*}
    x=32,y=0x = \tfrac{3}{2}, \quad y = 0

    Volume = area when z=1z = 1. Hence,

    A=dA=2θ=0π2r=0r=3cosθrdrdθ=θ=0πr=0r=3cosθrdrdθif we set up like this, we will get cosθ=1 and cos0=1. The total will be 0.=2θ=0π/2r22r=0r=3cosθdθ=θ=0π/29cos2θdθ=θ=0π/292(1+cos2θ)dθ=9π4\begin{equation*} \begin{aligned} A &= \iint dA \\ &=2 \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{r=3\cos\theta} r\,dr\,d\theta\\ &= \int_{\theta=0}^{\pi} \int_{r=0}^{r=3\cos\theta} r\,dr\,d\theta \quad \Leftarrow \small \text{if we set up like this, we will get } \cos\theta = -1 \text{ and } \cos 0 = 1. \text{ The total will be 0.} \\ &= 2 \int_{\theta=0}^{\pi/2} \left. \frac{r^{2}}{2} \right\vert_{r=0}^{r=3\cos\theta} d\theta \\ &= \int_{\theta=0}^{\pi/2} 9\cos^{2}\theta \, d\theta \\ &= \int_{\theta=0}^{\pi/2} \frac{9}{2}(1+\cos 2\theta)\, d\theta = \frac{9\pi}{4} \end{aligned} \end{equation*}
  6. ydV\iiint y d V, a solid is bound by z=4x2y2z=4-x^{2}-y^{2} in the first octant (x=0,y=0,z=(x=0, y=0, z= 0)0)

    Solution
    Figure for Answer 6
    z=4x2y20=4x2y222=x2+y2,r=2\begin{equation*} \begin{aligned} z &= 4 - x^2 - y^2 \\ 0 &= 4 - x^2 - y^2 \\ 2^2 &= x^2 + y^2, \quad r = 2 \end{aligned} \end{equation*}
    ydV=0π20204x2y2ydzrdrdθ=0π202[yz]z=0z=4x2y2rdrdθ=0π202(4x2y2)yrdrdθ=0π202(4r2)rsinθrdrdθ=0π202sinθr2(4r2)drdθ=0π202(4r2sinθr4sinθ)drdθ=0π2[4r33sinθr55sinθ]r=0r=2dθ=0π2(323sinθ325sinθ)dθ=[323cosθ+325cosθ]0π2=(323cosπ2+325cosπ2)(323cos0+325cos0)=(0)(323+325)=323325=1609615=6415\begin{equation*} \begin{aligned} \iiint y d V &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \int_{0}^{4-x^2-y^2} y \, dz \, r dr \, d\theta \\ &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \left[ yz \right]_{z=0}^{z=4-x^2-y^2} r \, dr \, d\theta \\ &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} (4 - x^2 - y^2)y \, r \, dr \, d\theta \\ &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} (4 - r^2)r\sin\theta \, r \, dr \, d\theta \\ &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \sin\theta \cdot r^2(4 - r^2) \, dr \, d\theta \\ &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} (4r^2\sin\theta - r^4\sin\theta) \, dr \, d\theta \\ &= \int_{0}^{\frac{\pi}{2}} \left[ \frac{4r^3}{3}\sin\theta - \frac{r^5}{5}\sin\theta \right]_{r=0}^{r=2} \, d\theta \\ &= \int_{0}^{\frac{\pi}{2}} \left( \frac{32}{3}\sin\theta - \frac{32}{5}\sin\theta \right) \, d\theta \\ &= \left[ -\frac{32}{3}\cos\theta + \frac{32}{5}\cos\theta \right]_{0}^{\frac{\pi}{2}} \\ &= \left( -\frac{32}{3}\cos\frac{\pi}{2} + \frac{32}{5}\cos\frac{\pi}{2} \right) - \left( -\frac{32}{3}\cos 0 + \frac{32}{5}\cos 0 \right) \\ &= (0) - \left( -\frac{32}{3} + \frac{32}{5} \right) \\ &= \frac{32}{3} - \frac{32}{5} \\ &= \frac{160 - 96}{15} \\ &= \frac{64}{15} \end{aligned} \end{equation*}
  7. Use cylindrical coordinates to find the volume of a curved wedge cut out from a cylinder (x22)2+y2=4\left(x^{2}-2\right)^{2}+y^{2}=4 by the planes z=0z=0z=0 \mathrm{z}=0 and z=yz=-y.

    Figure for Question 7
    Solution

    First, sketch the integration region.

    (x2)2+y2=4(x-2)^2 + y^2 = 4 is a circle, since x2+y2=4xr2=4rcos(θ)x^2 + y^2 = 4x \Leftrightarrow r^2 = 4r \cos(\theta)

    r=4cos(θ)r=4\cos(\theta)

    Since 0zy0 \le z \le -y, the integration region is on the y0y \le 0 part of the z=0z = 0 plane.

    V=3π/22π04cos(θ)0rsin(θ)rdzdrdθ.V=3π/22π04cos(θ)[rsin(θ)0]rdrdθV=3π/22π([r33]04cos(θ))sin(θ)dθ.V=3π/22π433cos3(θ)sin(θ)dθ.\begin{equation*} \begin{aligned} V &= \int_{3\pi/2}^{2\pi} \int_{0}^{4\cos(\theta)} \int_{0}^{-r\sin(\theta)} r \, dz \, dr \, d\theta. \\ \\ V &= \int_{3\pi/2}^{2\pi} \int_{0}^{4\cos(\theta)} \left[-r\sin(\theta) - 0\right] r \, dr \, d\theta \\ \\ V &= - \int_{3\pi/2}^{2\pi} \left( \left[ \frac{r^3}{3} \right]_{0}^{4\cos(\theta)} \right) \sin(\theta) \, d\theta. \\ \\ V &= - \int_{3\pi/2}^{2\pi} \frac{4^3}{3} \cos^3(\theta) \sin(\theta) \, d\theta. \end{aligned} \end{equation*}

    Introduce the substitution: u=cos(θ)u = \cos(\theta), du=sin(θ)dθdu = -\sin(\theta) \, d\theta;

    V=43301u3du=433(u4401)=43314=163V = \frac{4^3}{3} \int_{0}^{1} u^3 \, du = \frac{4^3}{3} \left( \left. \frac{u^4}{4} \right|_{0}^{1} \right) = \frac{4^3}{3} \cdot \frac{1}{4} = \frac{16}{3}
  8. Consider the region EE inside the right circular cylinder with equation r=2sinθr=2 \sin \theta, bounded below by the rθr \theta-plane and bounded above by the sphere with radius 4 centered at the origin. Set up a triple integral over this region with a function f(r,θ,z)f(r, \theta, z) in cylindrical coordinates.

    Figure for Question 8
    Solution

    Consider the region EE inside the right circular cylinder with equation r=2sinθr=2\sin\theta, bounded below by the rθr\theta-plane and bounded above by the sphere with radius 4 centered at the origin. Set up a triple integral over this region for a function f(r,θ,z)f(r, \theta, z) in cylindrical coordinates.

    The triple integral in cylindrical coordinates for a function f(r,θ,z)f(r, \theta, z) is given by:

    Ef(r,θ,z)dV=θminθmaxrmin(θ)rmax(θ)zmin(r,θ)zmax(r,θ)f(r,θ,z)rdzdrdθ\iiint_E f(r, \theta, z) \, dV = \int_{\theta_{min}}^{\theta_{max}} \int_{r_{min}(\theta)}^{r_{max}(\theta)} \int_{z_{min}(r, \theta)}^{z_{max}(r, \theta)} f(r, \theta, z) \, r \, dz \, dr \, d\theta

    We need to find the bounds for zz, rr, and θ\theta that describe the region EE.

    The region is bounded below by the rθr\theta-plane, which corresponds to the plane z=0z=0. The region is bounded above by the sphere of radius 4 centered at the origin. The equation of this sphere in Cartesian coordinates is x2+y2+z2=16x^2 + y^2 + z^2 = 16. In cylindrical coordinates, since r2=x2+y2r^2 = x^2 + y^2, this becomes r2+z2=16r^2 + z^2 = 16.

    Solving for zz, we get z=16r2z = \sqrt{16 - r^2} (we take the positive root for the upper hemisphere). Therefore, the limits for zz are:

    0z16r20 \le z \le \sqrt{16 - r^2}

    The projection of the volume onto the rθr\theta-plane (the xy-plane) is determined by the cylinder r=2sinθr=2\sin\theta. For any given angle θ\theta, the radius rr extends from the origin (r=0r=0) to the edge of the cylinder (r=2sinθr=2\sin\theta). Therefore, the limits for rr are:

    0r2sinθ0 \le r \le 2\sin\theta

    To find the limits for θ\theta, we analyze the base of the cylinder r=2sinθr = 2\sin\theta in the xy-plane. To ensure the radius rr is non-negative, we must have sinθ0\sin\theta \ge 0. This condition is met for angles in the first and second quadrants.

    The curve starts at the origin when θ=0\theta = 0 (since r=2sin(0)=0r=2\sin(0)=0), traces a full circle, and returns to the origin when θ=π\theta = \pi (since r=2sin(π)=0r=2\sin(\pi)=0). Therefore, the limits for θ\theta are:

    0θπ0 \le \theta \le \pi

    Combining these limits, the triple integral is set up as follows:

    0π02sinθ016r2f(r,θ,z)rdzdrdθ\int_{0}^{\pi} \int_{0}^{2\sin\theta} \int_{0}^{\sqrt{16-r^2}} f(r, \theta, z) \, r \, dz \, dr \, d\theta
  9. Find the volume of solid bound by z=2z=2 and z=x2+y2z=\sqrt{x^{2}+y^{2}}

    Solution

    We want to find the volume of the solid region EE bounded above by the plane z=2z=2 and bounded below by the cone z=x2+y2z = \sqrt{x^2+y^2}.

    The equations involve x2+y2x^2+y^2, and the solid has an axis of symmetry along the z-axis. This makes cylindrical coordinates (r,θ,z)(r, \theta, z) the most convenient choice. The coordinate transformations are:

    x=rcos(θ)y=rsin(θ)x2+y2=r2\begin{align*} x &= r\cos(\theta) \\ y &= r\sin(\theta) \\ x^2 + y^2 &= r^2 \end{align*}

    The volume element in cylindrical coordinates is dV=rdzdrdθdV = r \, dz \, dr \, d\theta. The equations of the bounding surfaces become:

    • Cone: z=r2    z=rz = \sqrt{r^2} \implies z = r
    • Plane: z=2z = 2

    The volume VV is given by the triple integral over the region E:

    V=EdVV = \iiint_E dV

    We need to determine the limits of integration for zz, rr, and θ\theta.

    Limits for zz: The solid is bounded below by the cone (z=rz=r) and above by the plane (z=2z=2). Thus, the limits for zz are:

    rz2r \le z \le 2

    Limits for rr and θ\theta: The limits for rr and θ\theta are determined by the projection of the solid onto the xy-plane. This projection is the region where the cone intersects the plane. We find this by setting the z-values equal:

    r=2r=2

    This describes a circle of radius 2 centered at the origin. Therefore, the radius rr ranges from 00 to 22, and the angle θ\theta ranges over a full circle from 00 to 2π2\pi.

    0r20θ2π\begin{align*} 0 \le r \le 2 \\ 0 \le \theta \le 2\pi \end{align*}

    The Integral: Combining these limits, the volume integral is:

    V=02π02r2rdzdrdθV = \int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{2} r \, dz \, dr \, d\theta

    We evaluate the integral from the inside out.

    Step 1: Integrate with respect to zz

    r2rdz=r[z]r2=r(2r)=2rr2\int_{r}^{2} r \, dz = r \left[ z \right]_{r}^{2} = r(2 - r) = 2r - r^2

    Step 2: Integrate with respect to rr

    Substitute the result from Step 1 into the next integral:

    02(2rr2)dr=[r2r33]02=(22233)(0)=483=12383=43\int_{0}^{2} (2r - r^2) \, dr = \left[ r^2 - \frac{r^3}{3} \right]_{0}^{2} = \left( 2^2 - \frac{2^3}{3} \right) - (0) = 4 - \frac{8}{3} = \frac{12}{3} - \frac{8}{3} = \frac{4}{3}

    Step 3: Integrate with respect to θ\theta

    Substitute the result from Step 2 into the final integral:

    02π43dθ=43[θ]02π=43(2π0)=8π3\int_{0}^{2\pi} \frac{4}{3} \, d\theta = \frac{4}{3} \left[ \theta \right]_{0}^{2\pi} = \frac{4}{3} (2\pi - 0) = \frac{8\pi}{3}
The volume of the solid bounded by the plane $z=2$ and the cone $z=\sqrt{x^2+y^2}$ is:

$$
V = \frac{8\pi}{3}
$$
:::
  1. Use spherical coordinates to find the volume of the region outside the sphere ρ=2\rho=2 cos(ϕ)\cos (\phi) and inside the sphere ρ=2\rho=2 with ϕ[0,π/2]\phi \in[0, \pi / 2].

    Figure for Question 10
    Solution
    V=02π0π/22cos(ϕ)2ρ2sin(ϕ)dρdϕdθ.V=02π0π/2(ρ33)2cos(ϕ)2sin(ϕ)dϕdθV=02π0π/2[233(2cos(ϕ))33]sin(ϕ)dϕdθV=02π0π/213[88cos3(ϕ)]sin(ϕ)dϕdθV=8302π0π/2[1cos3(ϕ)]sin(ϕ)dϕdθV=83(2π)0π/2[sin(ϕ)cos3(ϕ)sin(ϕ)]dϕV=16π3[(cos(ϕ))0π/20π/2cos3(ϕ)sin(ϕ)dϕ].\begin{align*} V &= \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{2\cos(\phi)}^{2} \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta. \\ V &= \int_{0}^{2\pi} \int_{0}^{\pi/2} \left( \frac{\rho^3}{3} \right) \Bigg|_{2\cos(\phi)}^{2} \sin(\phi) \, d\phi \, d\theta \\ V &= \int_{0}^{2\pi} \int_{0}^{\pi/2} \left[ \frac{2^3}{3} - \frac{(2\cos(\phi))^3}{3} \right] \sin(\phi) \, d\phi \, d\theta \\ V &= \int_{0}^{2\pi} \int_{0}^{\pi/2} \frac{1}{3} \left[ 8 - 8\cos^3(\phi) \right] \sin(\phi) \, d\phi \, d\theta \\ V &= \frac{8}{3} \int_{0}^{2\pi} \int_{0}^{\pi/2} \left[ 1 - \cos^3(\phi) \right] \sin(\phi) \, d\phi \, d\theta \\ V &= \frac{8}{3} (2\pi) \int_{0}^{\pi/2} \left[ \sin(\phi) - \cos^3(\phi)\sin(\phi) \right] \, d\phi \\ V &= \frac{16\pi}{3} \left[ \left( -\cos(\phi) \right) \Bigg|_{0}^{\pi/2} - \int_{0}^{\pi/2} \cos^3(\phi)\sin(\phi) \, d\phi \right]. \end{align*}

    Introduce the substitution for the integral: u=cos(ϕ)u = \cos(\phi), du=sin(ϕ)dϕdu = -\sin(\phi) \, d\phi.

    When ϕ=0\phi = 0, u=cos(0)=1u = \cos(0) = 1.

    When ϕ=π/2\phi = \pi/2, u=cos(π/2)=0u = \cos(\pi/2) = 0.

    Now substitute into the integral:

    0π/2cos3(ϕ)sin(ϕ)dϕ=10u3(du)=10u3du=01u3du.\int_{0}^{\pi/2} \cos^3(\phi)\sin(\phi) \, d\phi = \int_{1}^{0} u^3 (-du) = - \int_{1}^{0} u^3 \, du = \int_{0}^{1} u^3 \, du.

    So, the entire expression for VV becomes:

    V=16π3[101u3du]V=16π3[1(u44)01]V=16π3[1(144044)]V=16π3[114]V=16π3(34)V=16π334V=4π.\begin{align*} V &= \frac{16\pi}{3} \left[ 1 - \int_{0}^{1} u^3 \, du \right] \\ V &= \frac{16\pi}{3} \left[ 1 - \left( \frac{u^4}{4} \right) \Bigg|_{0}^{1} \right] \\ V &= \frac{16\pi}{3} \left[ 1 - \left( \frac{1^4}{4} - \frac{0^4}{4} \right) \right] \\ V &= \frac{16\pi}{3} \left[ 1 - \frac{1}{4} \right] \\ V &= \frac{16\pi}{3} \left( \frac{3}{4} \right) \\ V &= \frac{16\pi \cdot 3}{3 \cdot 4} \\ V &= 4\pi. \end{align*}
  2. Given a solid bound by z=2z=2 and z=x2+y2z=\sqrt{x^{2}+y^{2}}, find the mass density if the mass density is directly proportional to the square of the distance from origin.

    Solution

    The problem states that the mass density, let's call it δ(x,y,z)\delta(x,y,z), is directly proportional to the square of the distance from the origin. The square of the distance from the origin to a point (x,y,z)(x,y,z) is x2+y2+z2x^2+y^2+z^2.

    Therefore, the density function is:

    δ(x,y,z)=k(x2+y2+z2)\delta(x,y,z) = k(x^2+y^2+z^2)

    where kk is the constant of proportionality.

    Given the geometry of the solid (bounded by a cone), it is best to use spherical coordinates (ρ,ϕ,θ)(\rho, \phi, \theta). In spherical coordinates, the square of the distance from the origin is simply ρ2\rho^2. So, the density function becomes:

    δ(ρ,ϕ,θ)=kρ2\delta(\rho, \phi, \theta) = k\rho^2

    The solid is bounded by the plane z=2z=2 and the cone z=x2+y2z=\sqrt{x^2+y^2}. We must convert these boundaries into spherical coordinates.

    The Cone: In cylindrical coordinates, the cone is z=rz=r. Using the transformations z=ρcos(ϕ)z=\rho\cos(\phi) and r=ρsin(ϕ)r=\rho\sin(\phi), we get:

    ρcos(ϕ)=ρsin(ϕ)    tan(ϕ)=1    ϕ=π4\rho\cos(\phi) = \rho\sin(\phi) \implies \tan(\phi) = 1 \implies \phi = \frac{\pi}{4}

    This means the cone forms a constant angle with the positive z-axis. The solid is above this cone, so the angle ϕ\phi ranges from the z-axis (ϕ=0\phi=0) to the cone itself.

    0ϕπ40 \le \phi \le \frac{\pi}{4}

    The Plane: The upper bound is the plane z=2z=2. Using z=ρcos(ϕ)z=\rho\cos(\phi):

    ρcos(ϕ)=2    ρ=2cos(ϕ)    ρ=2sec(ϕ)\rho\cos(\phi) = 2 \implies \rho = \frac{2}{\cos(\phi)} \implies \rho = 2\sec(\phi)

    The distance ρ\rho starts from the origin (ρ=0\rho=0) and extends to this plane.

    0ρ2sec(ϕ)0 \le \rho \le 2\sec(\phi)

    The Angle θ\theta: Since the solid is symmetric about the z-axis, the angle θ\theta completes a full revolution.

    0θ2π0 \le \theta \le 2\pi

    The total mass MM is the triple integral of the density function over the volume of the solid. The volume element in spherical coordinates is dV=ρ2sin(ϕ)dρdϕdθdV = \rho^2\sin(\phi) \, d\rho \, d\phi \, d\theta.

    M=EδdV=02π0π/402sec(ϕ)(kρ2)(ρ2sin(ϕ))dρdϕdθM = \iiint_E \delta \, dV = \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{2\sec(\phi)} (k\rho^2) (\rho^2\sin(\phi)) \, d\rho \, d\phi \, d\theta
    M=k02π0π/402sec(ϕ)ρ4sin(ϕ)dρdϕdθM = k \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{2\sec(\phi)} \rho^4 \sin(\phi) \, d\rho \, d\phi \, d\theta

    Step 1: Integrate with respect to ρ\rho

    02sec(ϕ)ρ4sin(ϕ)dρ=sin(ϕ)[ρ55]02sec(ϕ)=sin(ϕ)(2sec(ϕ))55=325sin(ϕ)cos5(ϕ)=325tan(ϕ)sec4(ϕ)\int_{0}^{2\sec(\phi)} \rho^4 \sin(\phi) \, d\rho = \sin(\phi) \left[ \frac{\rho^5}{5} \right]_{0}^{2\sec(\phi)} = \sin(\phi) \frac{(2\sec(\phi))^5}{5} = \frac{32}{5} \frac{\sin(\phi)}{\cos^5(\phi)} = \frac{32}{5} \tan(\phi)\sec^4(\phi)

    Step 2: Integrate with respect to ϕ\phi

    0π/4325tan(ϕ)sec4(ϕ)dϕ\int_{0}^{\pi/4} \frac{32}{5} \tan(\phi)\sec^4(\phi) \, d\phi

    We use the substitution u=tan(ϕ)u = \tan(\phi), so du=sec2(ϕ)dϕdu = \sec^2(\phi) \, d\phi. We rewrite sec4(ϕ)=sec2(ϕ)sec2(ϕ)=(1+tan2(ϕ))sec2(ϕ)=(1+u2)sec2(ϕ)\sec^4(\phi) = \sec^2(\phi)\sec^2(\phi) = (1+\tan^2(\phi))\sec^2(\phi) = (1+u^2)\sec^2(\phi).

    The limits change: when ϕ=0,u=0\phi=0, u=0; when ϕ=π/4,u=1\phi=\pi/4, u=1.

    32501u(1+u2)du=32501(u+u3)du=325[u22+u44]01=325(12+140)=325(34)=245\begin{align*} \frac{32}{5} \int_{0}^{1} u(1+u^2) \, du &= \frac{32}{5} \int_{0}^{1} (u+u^3) \, du \\ &= \frac{32}{5} \left[ \frac{u^2}{2} + \frac{u^4}{4} \right]_{0}^{1} \\ &= \frac{32}{5} \left( \frac{1}{2} + \frac{1}{4} - 0 \right) = \frac{32}{5} \left( \frac{3}{4} \right) = \frac{24}{5} \end{align*}

    Step 3: Integrate with respect to θ\theta

    02πk(245)dθ=24k5[θ]02π=24k5(2π)=48kπ5\int_{0}^{2\pi} k \left( \frac{24}{5} \right) \, d\theta = \frac{24k}{5} \left[ \theta \right]_{0}^{2\pi} = \frac{24k}{5}(2\pi) = \frac{48k\pi}{5}

    The total mass of the solid is:

    M=48kπ5M = \frac{48k\pi}{5}

    where kk is the constant of proportionality.

  3. Find the mass of TT,ρ(x,y,z)=y\rho(x, y, z)=y, where TT is region bound by y=x2+z2y=x^{2}+z^{2} and y=4y=4.

    Solution

    We need to find the mass MM of a solid region TT. The density is given by the function ρ(x,y,z)=y\rho(x, y, z) = y. The solid TT is bounded by the surfaces:

    • A paraboloid opening along the y-axis: y=x2+z2y = x^2 + z^2
    • A plane perpendicular to the y-axis: y=4y = 4

    The formula for mass is given by the triple integral of the density function over the region TT:

    M=Tρ(x,y,z)dVM = \iiint_T \rho(x, y, z) \, dV

    The solid has a circular cross-section in the xz-plane and is symmetric about the y-axis. This suggests using a modified version of cylindrical coordinates. Let's define our coordinates as follows:

    x=rcos(θ)z=rsin(θ)y=y\begin{align*} x &= r\cos(\theta) \\ z &= r\sin(\theta) \\ y &= y \end{align*}

    In this system, x2+z2=r2x^2 + z^2 = r^2. The volume element is dV=rdydrdθdV = r \, dy \, dr \, d\theta.

    The bounding surfaces and the density function become:

    • Paraboloid: y=r2y = r^2
    • Plane: y=4y = 4
    • Density: ρ(r,y,θ)=y\rho(r, y, \theta) = y

    We set up the integral in the order dydrdθdy \, dr \, d\theta.

    Limits for yy: For any point (r,θ)(r, \theta) in the xz-plane, the vertical extent of the solid goes from the paraboloid surface up to the plane.

    r2y4r^2 \le y \le 4

    Limits for rr and θ\theta: The projection of the solid onto the xz-plane is a disk. The radius of this disk is found at the intersection of the two surfaces:

    r2=4    r=2r^2 = 4 \implies r = 2

    Thus, the radius rr ranges from the y-axis (r=0r=0) to the edge of the disk (r=2r=2). Since the disk is complete, the angle θ\theta ranges over a full circle.

    0r20θ2π\begin{align*} 0 \le r \le 2 \\ 0 \le \theta \le 2\pi \end{align*}

    Now we substitute the density, volume element, and limits into the mass formula.

    M=02π02r24(y)(rdydrdθ)M = \int_{0}^{2\pi} \int_{0}^{2} \int_{r^2}^{4} (y) \cdot (r \, dy \, dr \, d\theta)

    We evaluate the integral from the inside out.

    Step 1: Integrate with respect to yy

    r24rydy=r[y22]r24=r(422(r2)22)=r(162r42)=8r12r5\int_{r^2}^{4} ry \, dy = r \left[ \frac{y^2}{2} \right]_{r^2}^{4} = r \left( \frac{4^2}{2} - \frac{(r^2)^2}{2} \right) = r \left( \frac{16}{2} - \frac{r^4}{2} \right) = 8r - \frac{1}{2}r^5

    Step 2: Integrate with respect to rr

    02(8r12r5)dr=[4r2r612]02=(4(22)2612)(0)=166412=16163=323\int_{0}^{2} \left( 8r - \frac{1}{2}r^5 \right) \, dr = \left[ 4r^2 - \frac{r^6}{12} \right]_{0}^{2} = \left( 4(2^2) - \frac{2^6}{12} \right) - (0) = 16 - \frac{64}{12} = 16 - \frac{16}{3} = \frac{32}{3}

    Step 3: Integrate with respect to θ\theta

    02π323dθ=323[θ]02π=323(2π0)=64π3\int_{0}^{2\pi} \frac{32}{3} \, d\theta = \frac{32}{3} \left[ \theta \right]_{0}^{2\pi} = \frac{32}{3}(2\pi - 0) = \frac{64\pi}{3}

    The total mass of the solid is:

    M=64π3M = \frac{64\pi}{3}