Skip to main content

Tutorial 11

Tutorial 11: Multiple Integrals in Polar Coordinate & Its Engineering Application

Tutorial Question
  1. In the following exercises, change the cartesian integral into an equivalent polar coordinate integral. Then solve the integral in polar coordinate:

    a. 1101x2dydx\displaystyle\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x

    b. 020xydydx\displaystyle\int_{0}^{2} \int_{0}^{x} y d y d x

    c. 111x21x22(1+x2+y2)2dydx\displaystyle\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x

    d. 0ln20(ln2)2y2ex2+y2dxdy\displaystyle\int_{0}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^{2}-y^{2}}} e \sqrt{x^{2}+y^{2}} d x d y

  2. Evaluate the 1x2y2dA\iint 1-x^{2}-y^{2} d A using polar coordinates

  3. Find the volume below z=y2x2+y2z=\frac{y^{2}}{x^{2}+y^{2}}, above xyx y-plane and between cylinder x2+y2=1x^{2}+y^{2}=1 and x2+y2=2x^{2}+y^{2}=2

  4. Find the volume between the sphere x2+y2+z2=1x^{2}+y^{2}+z^{2}=1 and the cone z=x2+y2z=\sqrt{x^{2}+y^{2}}

  5. Volume is equal to area only if the height (z) is equal to 1 . Find the area of ' RR^{\prime} where ' RR ' is the region bound by r=3cosθr=3 \cos \theta.

  6. ydV\iiint y d V, a solid is bound by z=4x2y2z=4-x^{2}-y^{2} in the first octant (x=0,y=0,z=(x=0, y=0, z= 0)0)

  7. Use cylindrical coordinates to find the volume of a curved wedge cut out from a cylinder (x22)2+y2=4\left(x^{2}-2\right)^{2}+y^{2}=4 by the planes z=0z=0z=0 \mathrm{z}=0 and z=yz=-y.

    Figure for Question 7
  8. Consider the region EE inside the right circular cylinder with equation r=2sinθr=2 \sin \theta, bounded below by the rθr \theta-plane and bounded above by the sphere with radius 4 centered at the origin. Set up a triple integral over this region with a function f(r,θ,z)f(r, \theta, z) in cylindrical coordinates.

    Figure for Question 8
  9. Find the volume of solid bound by z=2z=2 and z=x2+y2z=\sqrt{x^{2}+y^{2}}

  10. Use spherical coordinates to find the volume of the region outside the sphere ρ=2\rho=2 cos(ϕ)\cos (\phi) and inside the sphere ρ=2\rho=2 with ϕ[0,π/2]\phi \in[0, \pi / 2].

    Figure for Question 10
  11. Given a solid bound by z=2z=2 and z=x2+y2z=\sqrt{x^{2}+y^{2}}, find the mass density if the mass density is directly proportional to the square of the distance from origin.

  12. Find the mass of ' TT ',ρ(x,y,z)=y\rho(x, y, z)=y, where T\mathrm{T} is region bound by y=x2+z2y=x^{2}+z^{2} and y=4y=4.